Skip to main content

Volumetric Bar-Chart Chips for Biosensing

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1570))

Abstract

The volumetric bar-chart chip (V-Chip) is a microfluidics-based, point-of-care (POC) device for the multiplexed and quantitative measurement of biomarkers. Volumetric readouts, based on the measurement of oxygen generated by a reaction between catalase and hydrogen peroxide, allow instant visual quantitation of target biomarkers and provide visualized bar charts without any assistance from instruments and without the need for data processing or graphics plotting. V-Chip shows potential capabilities in POC and personalized diagnostics; for instance, it can be utilized for making high-throughput, multiplexed, and quantitative measurements. Further, this system is highly portable and can be performed at low cost. The development of the V-Chip thus marks a POC milestone and opens up the possibility of instrument-free personalized diagnostics. Here, we describe the protocols for the fabrication of V-Chip and the use of silica nanoparticles as the probe carrier for the V-Chip-based enzyme-linked immunosorbent assay (ELISA) for the detection of biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, Zu Y, Qin L (2012) Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat Commun 3:12831–12839

    Article  Google Scholar 

  2. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  Google Scholar 

  3. Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23:H151–H176

    Article  CAS  Google Scholar 

  4. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G, Karita E, Mwambarangwe L, Braunstein SL, van de Wijgert J, Sahabo R, Justman JE, El-Sadr W, Sia SK (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019

    Article  CAS  Google Scholar 

  5. Fan R, Vermesh O, Srivastava A, Yen BK, Qin L, Ahmad H, Kwong GA, Liu CC, Gould J, Hood L, Heath JR (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26:1373–1378

    Article  CAS  Google Scholar 

  6. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    Article  CAS  Google Scholar 

  7. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703

    Article  CAS  Google Scholar 

  8. Song YJ, Huang YY, Liu XW, Zhang XJ, Ferrari M, Qin LD (2014) Point-of-care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol 32:132–139

    Article  CAS  Google Scholar 

  9. Addae-Mensah KA, Cheung YK, Fekete V, Rendely MS, Sia SK (2010) Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation. Lab Chip 10:1618–1622

    Article  CAS  Google Scholar 

  10. Qin LD, Vermesh O, Shi QH, Heath JR (2009) Self-powered microfluidic chips for multiplexed protein assays from whole blood. Lab Chip 9:2016–2020

    Article  CAS  Google Scholar 

  11. Du WB, Li L, Nichols KP, Ismagilov RF (2009) SlipChip. Lab Chip 9:2286–2292

    Article  CAS  Google Scholar 

  12. Belder D (2010) Screening in one sweep using the slipchip. Angew Chem Int Ed Engl 49:6484–6486

    Article  CAS  Google Scholar 

  13. Li L, Du WB, Ismagilov RF (2010) User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments. J Am Chem Soc 132:106–111

    Article  CAS  Google Scholar 

  14. Shen F, Davydova EK, Du WB, Kreutz JE, Piepenburg O, Ismagilov RF (2011) Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip. Anal Chem 83:3533–3540

    Article  CAS  Google Scholar 

  15. Shen F, Du WB, Davydova EK, Karymov MA, Pandey J, Ismagilov RF (2010) Nanoliter multiplex PCR arrays on a SlipChip. Anal Chem 82:4606–4612

    Article  CAS  Google Scholar 

  16. Shen F, Sun B, Kreutz JE, Davydova EK, Du WB, Reddy PL, Joseph LJ, Ismagilov RF (2011) Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc 133:17705–17712

    Article  CAS  Google Scholar 

  17. Li Y, Xuan J, Song Y, Qi W, He B, Wang P, Qin L (2016) Nanoporous glass integrated in volumetric bar-chart chip for point-of-care diagnostics of non-small cell lung cancer. ACS Nano 10:1640–1647

    Article  CAS  Google Scholar 

  18. Li Y, Xuan J, Xia T, Han X, Song Y, Cao Z, Jiang X, Guo Y, Wang P, Qin L (2015) Competitive volumetric bar-chart chip with real-time internal control for point-of-care diagnostics. Anal Chem 87:3771–3777

    Article  CAS  Google Scholar 

  19. Li Y, Xuan J, Song Y, Wang P, Qin L (2015) A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab Chip 15:3300–3306

    Article  CAS  Google Scholar 

  20. George P (1947) Reaction between catalase and hydrogen peroxide. Nature 160:41–43

    Article  CAS  Google Scholar 

  21. Song Y, Wang Y, Qin L (2013) A multistage volumetric bar chart chip for visualized quantification of DNA. J Am Chem Soc 135:16785–16788

    Article  CAS  Google Scholar 

  22. Song Y, Xia X, Wu X, Wang P, Qin L (2014) Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays. Angew Chem Int Ed Engl 53:12451–12455

    CAS  Google Scholar 

  23. Eichelsdoerfer DJ, Liao X, Cabezas MD, Morris W, Radha B, Brown KA, Giam LR, Braunschweig AB, Mirkin CA (2013) Large-area molecular patterning with polymer pen lithography. Nat Protoc 8:2548–2560

    Article  CAS  Google Scholar 

  24. Heyries KA, Tropini C, VanInsberghe M, Doolin C, Petriv OI, Singhal A, Leung K, Hughesman CB, Hansen CL (2011) Megapixel digital PCR. Nat Methods 8:649–651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Song, Y., Li, Y., Qin, L. (2017). Volumetric Bar-Chart Chips for Biosensing. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics