Skip to main content

Application of Hydrogel Template Strategy in Ocular Drug Delivery

  • Protocol
  • First Online:
Book cover Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1570))

Abstract

The hydrogel template strategy was previously developed to fabricate homogeneous polymeric microparticles. Here, we demonstrate the versatility of the hydrogel template strategy for the development of nanowafer-based ocular drug delivery systems. We describe the fabrication of dexamethasone-loaded nanowafers using polyvinyl alcohol and the instillation of a nanowafer on a mouse eye. The nanowafer, a small circular disk, is placed on the ocular surface, and it releases a drug as it slowly dissolves over time, thus increasing ocular bioavailability and enhancing efficiency to treat eye injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  CAS  Google Scholar 

  2. Novack GD (2009) Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther 85:539–543

    Article  CAS  Google Scholar 

  3. Kim YC, Chiang B, Wu X et al (2014) Ocular delivery of macromolecules. J Control Release 190:172–181

    Article  CAS  Google Scholar 

  4. Gaudana R, Ananthula HK, Parenky A et al (2010) Ocular drug delivery. Am Assoc Pharm Sci J 12:348–360

    CAS  Google Scholar 

  5. Ranta VP, Urtti A (2006) Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev 58:1164–1181

    Article  CAS  Google Scholar 

  6. Mannermaa E, Vellonen KS, Urtti A (2006) Drug transport in corneal epithelium and blood_retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58:1136–1163

    Article  CAS  Google Scholar 

  7. Jarvinen K, Jarvinen T, Urtti A (1995) Ocular absorption following topical delivery. Adv Drug Deliv Rev 16:3–19

    Article  Google Scholar 

  8. Salminen L (1990) Review: systemic absorption of topically applied ocular drugs in humans. J Ocul Pharmacol 6:243–249

    Article  CAS  Google Scholar 

  9. Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retina Eye Res 29:596–609

    Article  CAS  Google Scholar 

  10. Gershkovich P, Wasan KM, Barta CA (2008) A review of the application of lipid-based systems in systemic, dermal, transdermal, and ocular drug delivery. Crit Rev Ther Drug 25:545–584

    Article  CAS  Google Scholar 

  11. Choy YB, Park JH, McCarey BE et al (2008) Mucoadhesive microdiscs engineered for ophthalmic drug delivery: effect of particle geometry and formulation on preocular residence time. Invest Ophthalmol Vis Sci 49:4808–4815

    Article  Google Scholar 

  12. Chang E, McClellan AJ, Farley WJ et al (2011) Biodegradable PLGA-based drug delivery systems for modulating ocular surface disease under experimental murine dry eye. J Clin Exp Ophthalmol 2:191. doi:10.4172/2155-9570.1000191

    Article  Google Scholar 

  13. Aksungur P, Demirbilek M, Denkbas EB et al (2011) Development and characterization of cyclosporine a loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294

    Article  CAS  Google Scholar 

  14. Shah M, Edman MC, Janga SR et al (2013) A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjogren's syndrome. J Control Release 171:269–279

    Article  CAS  Google Scholar 

  15. Gulsen D, Chauhan A (2004) Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci 45:2342–2347

    Article  Google Scholar 

  16. Carvalho IM, Marques CS, Oliveira RS et al (2015) Sustained drug release by contact lenses for glaucoma treatment–a review. J Control Release 202:76–82

    Article  CAS  Google Scholar 

  17. Garhwal R, Shady SF, Ellis EJ et al (2012) Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Invest Ophthalmol Vis Sci 53:1341–1352

    Article  CAS  Google Scholar 

  18. Singh K, Nair AB, Kumar A et al (2011) Novel approaches in formulation and drug delivery using contact lenses. J Basic Clin Pharm 2:87–101

    Google Scholar 

  19. Acharya G, Shin CS, McDermott M et al (2010) The hydrogel template method for fabrication of homogeneous nano/micro particles. J Control Release 141:314–319

    Article  CAS  Google Scholar 

  20. Acharya G, Shin CS, Vedantham K et al (2010) A study of drug release from homogeneous PLGA microstructures. J Control Release 146:201–206

    Article  CAS  Google Scholar 

  21. Acharya G, McDermott M, Shin SJ et al (2011) Hydrogel templates for the fabrication of homogeneous polymer microparticles. Methods Mol Biol 726:179–185

    Article  CAS  Google Scholar 

  22. Coursey TG, Henriksson JT, Marcano DC et al (2015) Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release 213:168–174

    Article  CAS  Google Scholar 

  23. Yuan X, Marcano DC, Shin CS et al (2015) Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano 9:1749–1758

    Article  CAS  Google Scholar 

  24. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639

    Article  CAS  Google Scholar 

  25. Moshirfar M, Pierson K, Hanamaikai K et al (2014) Artificial tears potpourri: a literature review. Clin Ophthalmol 8:1419–1433

    CAS  Google Scholar 

  26. Nagelhout TJ, Gamache DA, Roberts L et al (2005) Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye. J Ocul Pharmacol Ther 21:139–148

    Article  CAS  Google Scholar 

  27. Patane MA, Cohen A, From S et al (2011) Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: results of a randomized clinical trial. Clin. Ophthalmol. 5:633–643

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanashyam Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Shin, C.S., Marcano, D.C., Park, K., Acharya, G. (2017). Application of Hydrogel Template Strategy in Ocular Drug Delivery. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics