Skip to main content

Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces

  • Protocol
  • First Online:
Biomedical Nanotechnology

Abstract

RNA interference (RNAi)-based gene regulation has recently emerged as a promising strategy to silence genes that drive disease progression. RNAi is typically mediated by small interfering ribonucleic acids (siRNAs), which, upon delivery into the cell cytoplasm, trigger degradation of complementary messenger RNA molecules to halt production of their encoded proteins. While RNAi has enormous clinical potential, its in vivo utility has been hindered because siRNAs are rapidly degraded by nucleases, cannot passively enter cells, and are quickly cleared from the bloodstream. To overcome these delivery barriers, siRNAs can be conjugated to nanoparticles (NPs), which increase their stability and circulation time to enable in vivo gene regulation. Here, we present methods to conjugate siRNA duplexes to NPs with gold surfaces. Further, we describe how to quantify the resultant amount of siRNA sense and antisense strands loaded onto the NPs using a fluorescence-based assay. This method focuses on the attachment of siRNAs to 13 nm gold NPs, but it is adaptable to other types of nucleic acids and nanoparticles as discussed throughout the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng Y, Wang CC, Choy K et al (2014) Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 538:217–227

    Article  CAS  Google Scholar 

  2. Hill AB, Chen M, Chen C-K et al (2016) Overcoming gene-delivery hurdles: Physiological considerations for nonviral vectors. Trends Biotechnol 34(2):91–105

    Article  CAS  Google Scholar 

  3. Chen J, Guo Z, Chen X (2016) Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 3:16023

    Article  Google Scholar 

  4. Kim HJ, Kim A, Miyata K et al (2016) Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 104:61–77

    Article  CAS  Google Scholar 

  5. Ding Y, Jiang Z, Saha K et al (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22(6):1075–1083

    Article  CAS  Google Scholar 

  6. Deng ZJ, Morton SW, Ben-Akiva E et al (2013) Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7(11):9571–9584

    Article  CAS  Google Scholar 

  7. Elbakry A, Zaky A, Liebl R et al (2009) Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 9(5):2059–2064

    Article  CAS  Google Scholar 

  8. Lee J-S, Green JJ, Love KT et al (2009) Gold, poly(β-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett 9(6):2402–2406

    Article  CAS  Google Scholar 

  9. Dahlman JE, Barnes C, Khan OF et al (2014) In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 9:648–655

    Article  CAS  Google Scholar 

  10. Lee JB, Hong J, Bonner DK et al (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322

    Article  CAS  Google Scholar 

  11. Giljohann DA, Seferos DS, Prigodich AE et al (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073

    Article  CAS  Google Scholar 

  12. Jensen SA, Day ES, Ko CH et al (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5(209):209ra152

    Article  Google Scholar 

  13. Randeria PS, Seeger MA, Wang X-Q et al (2015) siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A 112(18):5573–5578

    Article  CAS  Google Scholar 

  14. Zheng D, Giljohann DA, Chenc DL et al (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A 109(30):11975–11980

    Article  CAS  Google Scholar 

  15. Barnaby SN, Lee A, Mirkin CA (2014) Probing the inherent stability of siRNA immobilized on nanoparticle constructs. Proc Natl Acad Sci U S A 111(27):9739–9744

    Article  CAS  Google Scholar 

  16. Choi CHJ, Hao L, Narayan SP et al (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci U S A 110(19):7625–7630

    Article  CAS  Google Scholar 

  17. Patel PC, Giljohann DA, Daniel WL et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21(12):2250–2256

    Article  CAS  Google Scholar 

  18. Giljohann DA, Seferos DS, Patel PC et al (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821

    Article  CAS  Google Scholar 

  19. Raja MAG, Katas H, Wen TH (2015) Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS One 10(6):e1028963

    Google Scholar 

  20. Kim E-Y, Stanton J, Vega RA et al (2006) A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res 34(7):e54

    Article  Google Scholar 

  21. Demers LM, Mirkin CA, Mucic RC et al (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

  22. McKenzie F, Steven V, Ingram A et al (2009) Quantitation of biomolecules conjugated to nanoparticles by enzyme hydrolysis. Chem Commun 2009:2872–2874

    Article  Google Scholar 

  23. Randeria PS, Jones MR, Kohlsted KL et al (2015) What controls the hybridization thermodynamics of spherical nucleic acids? J Am Chem Soc 137(10):3486–3489

    Article  CAS  Google Scholar 

  24. Kouri FM, Hurley LA, Daniel WL et al (2015) miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 29(7):732–745

    Article  CAS  Google Scholar 

  25. Rosi NL, Giljohann DA, Thaxton CS et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030

    Article  CAS  Google Scholar 

  26. Hill HD, Millstone JE, Banholzer MJ et al (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3(2):418–424

    Article  CAS  Google Scholar 

  27. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge support from the University of Delaware Research Foundation, the W.M. Keck Foundation, Grant IRG14-251-07-IRG from the American Cancer Society, and an Institutional Development Award (IDeA) from the National Institutes of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under grant number U54-GM104941. J.R.M. received support from a National Defense Science and Engineering Graduate Fellowship from the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Melamed, J.R., Riley, R.S., Valcourt, D.M., Billingsley, M.M., Kreuzberger, N.L., Day, E.S. (2017). Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics