Skip to main content

Reconstruction of an Immune Dynamic Model to Simulate the Contrasting Role of Auxin and Cytokinin in Plant Immunity

  • Protocol
  • First Online:
Auxins and Cytokinins in Plant Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1569))

Abstract

In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant–pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant–pathogen interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Di Cara A, Garg A, De Micheli G et al (2007) Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 8:462. doi:10.1186/1471-2105-8-462

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Naseem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8:e1003026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mashiguchi K, Tanaka K, Sakai T et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108:18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fdos Maraschin S, Memelink J, Offringa R (2009) Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109

    Article  Google Scholar 

  7. Vidhyasekaran P (2015) Auxin signaling system in plant innate immunity. http://link.springer.com/book/10.1007/978-94-017-9285-1

  8. Gray WM, Estelle I (2000) Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem Sci 25:133–138

    Article  CAS  PubMed  Google Scholar 

  9. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  10. Naseem M, Kaltdorf M, Dandekar T (2015) The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J Exp Bot 66:4885–4896

    Article  CAS  PubMed  Google Scholar 

  11. Naseem M, Srivastava M, Tehseen M, Ahmed N (2015) Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective. Curr Protein Pept Sci 16:389–394

    Article  CAS  PubMed  Google Scholar 

  12. Grant MR, Jones JDG (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752

    Article  CAS  PubMed  Google Scholar 

  13. Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  14. Mutka AM, Fawley S, Tsao T, Kunkel BN (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J 74:746–754

    Article  CAS  PubMed  Google Scholar 

  15. Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  16. Argueso CT, Ferreira FJ, Epple P et al (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi J, Huh SU, Kojima M et al (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis. Dev Cell 19:284–295

    Article  CAS  PubMed  Google Scholar 

  18. Naseem M, Philippi N, Hussain A et al (2012) Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24:1793–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sardesai N, Lee L-Y, Chen H et al (2013) Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 6:ra100

    Article  PubMed  Google Scholar 

  20. Giron D, Frago E, Glevarec G et al (2013) Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol 27:599–609

    Article  Google Scholar 

  21. Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci 11:581–586

    Article  CAS  PubMed  Google Scholar 

  22. Karl S, Dandekar T (2015) Convergence behaviour and control in non-Linear biological networks. Scientific reports 5: 9746

    Google Scholar 

  23. Karl S, Dandekar T (2013) Jimena: efficient computing and system state identification for genetic regulatory networks. BMC Bioinformatics 14:306

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:199–205

    Article  Google Scholar 

  26. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:447–452

    Article  Google Scholar 

  27. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815

    Article  Google Scholar 

  28. Plant Metabolic Network (PMN), http://www.plantcyc.org/tools/tools_overview.faces on www.plantcyc.org. 28 Feb 2008

  29. Karl S, Dandekar T (2015) Convergence behaviour and control in non-linear biological networks. Sci Rep 5:9746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsuoka Y, Funahashi A, Ghosh S, Kitano H (2014) Modeling and simulation using Cell Designer. Methods Mol Biol 1164:121–145

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the German Research Foundation (DFG) for funding (TR124/B1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naseem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kaltdorf, M., Dandekar, T., Naseem, M. (2017). Reconstruction of an Immune Dynamic Model to Simulate the Contrasting Role of Auxin and Cytokinin in Plant Immunity. In: Dandekar, T., Naseem, M. (eds) Auxins and Cytokinins in Plant Biology. Methods in Molecular Biology, vol 1569. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6831-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6831-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6829-9

  • Online ISBN: 978-1-4939-6831-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics