Skip to main content

Real-Time Genetic Manipulations of the Cytokinin Pathway: A Tool for Laboratory and Field Studies

  • Protocol
  • First Online:
Auxins and Cytokinins in Plant Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1569))

  • 1407 Accesses

Abstract

Although many established tools for cytokinin (CK) pathway manipulations are well suitable for the analysis of molecular interactions, their use on a whole plant scale is often limited by the induction of severe developmental defects. To circumvent this problem, different methods were developed that allow for a more precise manipulation of the CK pathway. Here we present one of these systems, the pOp6/LhGR system for chemically inducible gene expression. This system allows regulation on a spatial, temporal, and quantitative scale and therefore provides a superior tool for analyzing the role of CKs in the interactions of plants with their environment. The pOp6/LhGR system was tested for RNAi-mediated gene silencing and heterologous gene expression and was successfully used for CK pathway manipulations in different model organisms (Arabidopsis thaliana, Nicotiana tabaccum, Nicotiana attenuata, Citrus sinensis × C. trifoliate). Here we describe specific aspects of the screening procedure and present an experimental setup that can not only be used in the laboratory but is also applicable under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60

    Article  CAS  PubMed  Google Scholar 

  2. Werner T, Nehnevajova E, Köllmer I, Novak O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  PubMed Central  Google Scholar 

  3. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell Online 18:40–54

    Article  CAS  Google Scholar 

  4. Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Novák J, Pavlů J, Novák O, Nožková-Hlaváčková V, Špundová M, Hlavinka J, Koukalová Š, Skalák J, Černý M, Brzobohatý B (2013) High cytokinin levels induce a hypersensitive-like response in tobacco. Ann Bot 112:41–55

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gan SS, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  7. Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  8. Camargo SR, Cancado GM, Ulian EC, Menossi M (2007) Identification of genes responsive to the application of ethanol on sugarcane leaves. Plant Cell Rep 26:2119–2128

    Article  CAS  PubMed  Google Scholar 

  9. Guo HS, Fei JF, Xie Q, Chua NH (2003) A chemical-regulated inducible RNAi system in plants. Plant J 34:383–392

    Article  CAS  PubMed  Google Scholar 

  10. Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  CAS  PubMed  Google Scholar 

  11. Samalova M, Brzobohaty B, Moore I (2005) pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J 41:919–935

    Article  CAS  PubMed  Google Scholar 

  12. Schäfer M, Brütting C, Gase K, Reichelt M, Baldwin I, Meldau S (2013) “Real time” genetic manipulation: a new tool for ecological field studies. Plant J 76:506–518

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  CAS  PubMed  Google Scholar 

  14. Rossignol P, Orbović V, Irish VF (2014) A dexamethasone-inducible gene expression system is active in Citrus plants. Sci Hortic 172:47–53

    Article  CAS  Google Scholar 

  15. Miller JS, Nguyen T, Stanley-Samuelson DW (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci U S A 91:12418–12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walton CH (1959) Clinical experience with dexamethasone. Can Med Assoc J 81:724–726

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27:733–743

    Article  PubMed  Google Scholar 

  18. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683

    Article  CAS  PubMed  Google Scholar 

  19. Gase K, Weinhold A, Bozorov T, Schuck S, Baldwin IT (2011) Efficient screening of transgenic plant lines for ecological research. Mol Ecol Resour 11:890–902

    Article  PubMed  Google Scholar 

  20. Velten J, Cakir C, Youn E, Chen J, Cazzonelli CI (2012) Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct. PLoS One 7:e30141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore I, Galweiler L, Grosskopf D, Schell J, Palme K (1998) A transcription activation system for regulated gene expression in transgenic plants. Proc Natl Acad Sci U S A 95:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baldwin I (1996) Chap. 49. In: Städler E, Rowell-Rahier M, Bauer R (eds) Proceedings of the 9th international symposium on insect-plant relationships, vol 53. Methyl jasmonate-induced nicotine production in Nicotiana attenuata: Inducing defenses in the field without wounding. Springer, Netherlands, pp 213–220

    Google Scholar 

  23. Kallenbach M, Bonaventure G, Gilardoni PA, Wissgott A, Baldwin IT (2012) Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proc Natl Acad Sci U S A 109:E1548–E1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  25. Meldau S, Baldwin IT, Wu J (2011) SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytol 189:1143–1156

    Article  CAS  PubMed  Google Scholar 

  26. Heidekamp F, Dirkse WG, Hille J, van Ormondt H (1983) Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene. Nucleic Acids Res 11:6211–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bohner S, Gatz C (2001) Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes. Mol Gen Genet 264:860–870

    Article  CAS  PubMed  Google Scholar 

  28. Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ueda N, Kojima M, Suzuki K, Sakakibara H (2012) Agrobacterium tumefaciens tumor morphology root plastid localization and preferential usage of hydroxylated prenyl donor is important for efficient gall formation. Plant Physiol 159:1064–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aoyama T, Chua N-H (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  CAS  PubMed  Google Scholar 

  31. Schäfer M, Meza-Canales ID, Brütting C, Baldwin IT, Meldau S (2015) Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata. New Phytol 207(3):645–658

    Article  PubMed  Google Scholar 

  32. Kallenbach M, Alagna F, Baldwin IT, Bonaventure G (2010) Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiol 152:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robison MM, Smid MPL, Wolyn DJ (2006) Organic solvents for the glucocorticoid inducer dexamethasone: are they toxic and unnecessary in hydroponic systems? Can J Bot 84:1013–1018

    Article  CAS  Google Scholar 

  35. Williams AC, Barry BW (2012) Penetration enhancers. Adv Drug Deliv Rev 64(Suppl):128–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Meldau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Schäfer, M., Meldau, S. (2017). Real-Time Genetic Manipulations of the Cytokinin Pathway: A Tool for Laboratory and Field Studies. In: Dandekar, T., Naseem, M. (eds) Auxins and Cytokinins in Plant Biology. Methods in Molecular Biology, vol 1569. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6831-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6831-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6829-9

  • Online ISBN: 978-1-4939-6831-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics