Skip to main content

Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device

  • Protocol
  • First Online:
Cryopreservation of Mammalian Gametes and Embryos

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1568))

Abstract

This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

*These authors contribute equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pyne DG, Liu J, Abdelgawad M, Sun Y (2014) Digital microfluidic processing of mammalian embryos for vitrification. PLoS One 9(9):e108128

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pegg DE (2010) The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 60:S36–S44

    Article  PubMed  Google Scholar 

  3. Whittingham D (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125–126

    Article  CAS  PubMed  Google Scholar 

  4. Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19

    Article  CAS  PubMed  Google Scholar 

  5. Vajta G, Nagy ZP (2006) Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online 12:779–796

    Article  PubMed  Google Scholar 

  6. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313:573–575

    Article  CAS  PubMed  Google Scholar 

  7. AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J (2010) Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online 20:209–222

    Article  PubMed  Google Scholar 

  8. Pollack MG, Fair RB (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  CAS  Google Scholar 

  9. Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10:1536–1542

    Article  CAS  PubMed  Google Scholar 

  10. Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225

    Article  CAS  PubMed  Google Scholar 

  11. Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S et al (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park S, Wijethunga PAL, Moon H, Han B (2011) On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device. Lab Chip 11:2212–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heo YS, Lee H-J, Hassell BA, Irimia D, Toth TL et al (2011) Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip 11:3530–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai D, Ding J, Smith GD, Takayama S (2013) Automated microfluidic gradient cryoprotectant exchange platform for murine oocyte and zygote vitrification reduces osmotic stress and improves embryo developmental competence. Fertil Steril 100:S107

    Article  Google Scholar 

  15. Song YS, Moon S, Hulli L, Hasan SK, Kayaalp E et al (2009) Microfluidics for cryopreservation. Lab Chip 9:1874–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ali J, Shelton JN (1993) Design of vitrification solutions for the cryopreservation of embryos. J Reprod Fertil 99:471–477

    Article  CAS  PubMed  Google Scholar 

  17. Berthier J, Clementz P, Roux J, Fouillet Y, Peponnet C (2006) Modeling microdrop motion between covered and open regions of EWOD microsystems. NSTI Nanotechnology Conference and Trade Show Boston, USA, Vol. 1. pp. 685–688.

    Google Scholar 

  18. Swain JE, Lai D, Takayama S, Smith GD (2013) Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip 13:1213–1224

    Article  CAS  PubMed  Google Scholar 

  19. Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T (1998) Cryopreservation of mature bovine oocytes by vitrification in straws. Cryobiology 37:77–85

    Article  CAS  PubMed  Google Scholar 

  20. Nakao K, Nakagata N, Katsuki M (1997) Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Exp Anim 46(3):231–234

    Article  CAS  PubMed  Google Scholar 

  21. Kuwayama M, Vajta G, Ieda S, Kato O (2005) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11:608–614

    Article  PubMed  Google Scholar 

  22. Martino A, Songsasen N, Leibo SP (1996) Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod 54:1059–1069

    Article  CAS  PubMed  Google Scholar 

  23. Au SH, Kumar P, Wheeler AR (2011) A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27:8586–8594

    Article  CAS  PubMed  Google Scholar 

  24. Luk VN, Mo GC, Wheeler AR (2008) Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–6389

    Article  CAS  PubMed  Google Scholar 

  25. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  CAS  PubMed  Google Scholar 

  26. Jönsson-Niedziółka M, Lapierre F, Coffinier Y, Parry SJ, Zoueshtiagh F et al (2011) EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11:490–496

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Grants from NSERC (Natural Sciences and Engineering Research Council of Canada) via a Discovery Grant and the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, J., Pyne, D.G., Abdelgawad, M., Sun, Y. (2017). Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Cryopreservation of Mammalian Gametes and Embryos. Methods in Molecular Biology, vol 1568. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6828-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6828-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6826-8

  • Online ISBN: 978-1-4939-6828-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics