Skip to main content

Quantitative Analysis of Glycerophospholipids in Mitochondria by Mass Spectrometry

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1567))

Abstract

Lipids draw increasing attention of cell biologists because of the wide variety of functions beyond their role as building blocks of cellular membranes. Mitochondrial membranes possess characteristic lipid compositions that are intimately associated with mitochondrial architecture and activities. Therefore, quantitative assessment of lipids in isolated mitochondria is of importance for mitochondrial research. Here, I describe our workflow for quantitative analysis of glycerophospholipids in mitochondria with a focus on purification of pure mitochondrial fractions from yeast and cultured mammalian cells as well as improved settings for the analysis of cardiolipin by nano-electrospray ionization mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren M, Phoon CK, Schlame M (2014) Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55:1–16. doi:10.1016/j.plipres.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Scharwey M, Tatsuta T, Langer T (2013) Mitochondrial lipid transport at a glance. J Cell Sci 126(Pt 23):5317–5323. doi:10.1242/jcs.134130

    Article  CAS  PubMed  Google Scholar 

  3. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52(4):590–614. doi:10.1016/j.plipres.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Frohman MA (2015) Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl) 93(3):263–269. doi:10.1007/s00109-014-1237-z

    Article  CAS  Google Scholar 

  5. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37(1):32–41. doi:10.1016/j.tibs.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  6. Richter-Dennerlein R, Korwitz A, Haag M, Tatsuta T, Dargazanli S, Baker M, Decker T, Lamkemeyer T, Rugarli EI, Langer T (2014) DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab 20(1):158–171. doi:10.1016/j.cmet.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  7. Monteiro JP, Oliveira PJ, Jurado AS (2013) Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 52(4):513–528. doi:10.1016/j.plipres.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  8. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598. doi:10.1038/nrm2934

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Han X (2014) Multidimensional mass spectrometry-based shotgun lipidomics. Methods Mol Biol 1198:203–220. doi:10.1007/978-1-4939-1258-2_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Almeida R, Pauling JK, Sokol E, Hannibal-Bach HK, Ejsing CS (2015) Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am Soc Mass Spectrom 26(1):133–148. doi:10.1007/s13361-014-1013-x

    Article  CAS  PubMed  Google Scholar 

  11. Shevchenko A, Surendranath V, Ejsing CS, Klemm RW, Simons K, Sampaio JL, Ekroos K, Duchoslav E (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141. doi:10.1073/pnas.0811700106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ozbalci C, Sachsenheimer T, Brügger B (2013) Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol 1033:3–20. doi:10.1007/978-1-62703-487-6_1

    Article  PubMed  Google Scholar 

  13. Brügger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98. doi:10.1146/annurev-biochem-060713-035324

    Article  PubMed  Google Scholar 

  14. Scherer M, Schmitz G, Liebisch G (2010) Simultaneous quantification of cardiolipin, bis(monoacylglycero)phosphate and their precursors by hydrophilic interaction LC-MS/MS including correction of isotopic overlap. Anal Chem 82(21):8794–8799. doi:10.1021/ac1021826

    Article  CAS  PubMed  Google Scholar 

  15. Vance JE (2014) MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 1841(4):595–609. doi:10.1016/j.bbalip.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  16. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  17. Gray A, Olsson H, Batty IH, Priganica L, Peter Downes C (2003) Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal Biochem 313(2):234–245

    Article  CAS  PubMed  Google Scholar 

  18. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P (2001) Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42(4):663–672

    PubMed  Google Scholar 

  19. Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78(17):6202–6214. doi:10.1021/ac060545x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Shotaro Saita and Kavia Bakka for providing protocols and example results, Susanne Brodesser and Mari Aaltonen for critical reading of the manuscript, and Thomas Langer for continuous support. I also acknowledge S. B. and Matthias Haag for technical advices in lipidomics. This work is supported by a grant of the Deutsche Forschungsgemeinschaft (TA 1132/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tatsuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tatsuta, T. (2017). Quantitative Analysis of Glycerophospholipids in Mitochondria by Mass Spectrometry. In: Mokranjac, D., Perocchi, F. (eds) Mitochondria. Methods in Molecular Biology, vol 1567. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6824-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6824-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6822-0

  • Online ISBN: 978-1-4939-6824-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics