Skip to main content

Differentiation and Metabolic Interrogation of Human Adipocytes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1566))

Abstract

Adipocytes differentiated from preadipocytes provide a valuable model for the study of human adipocyte metabolism. We describe methods for isolation of human stromal vascular cells, expansion of preadipocytes, differentiation into mature adipocytes, and in vitro metabolic interrogation of adipocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

eWAT:

Inguinal white adipose tissue (iWAT)

PA:

Preadipocyte

PBS:

Phosphate buffered saline

QRTPCR:

Quantitative real-time polymerase chain reaction

SAT:

Subcutaneous adipose tissue

SVF:

Stromal-vascular cell fraction

VAT:

Visceral adipose tissue

References

  1. O’Rourke RW, Meyer KA, Gaston G, White AE, Lumeng CN, Marks DL (2013) Hexosamine biosynthesis is a possible mechanism underlying hypoxia’s effects on lipid metabolism in human adipocytes. PLoS One 8:e71165

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tchkonia T, Giorgadze N, Pirtskhalava T, Thomou T, DePonte M, Koo A, Forse RA, Chinnappan D, Martin-Ruiz C, von Zglinicki T, Kirkland JL (2006) Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55:2571–2578

    Article  CAS  PubMed  Google Scholar 

  3. Tchkonia T, Tchoukalova YD, Giorgadze N, Pirtskhalava T, Karagiannides I, Forse RA, Koo A, Stevenson M, Chinnappan D, Cartwright A, Jensen MD, Kirkland JL (2005) Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. Am J Physiol Endocrinol Metab 288:E267–E277

    Article  CAS  PubMed  Google Scholar 

  4. Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, DePonte M, Stevenson M, Guo W, Han J, Waloga G, Lash TL, Jensen MD, Kirkland JL (2002) Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol 282:R1286–R1296

    Article  CAS  PubMed  Google Scholar 

  5. Tchoukalova YD, Koutsari C, Votruba SB, Tchkonia T, Giorgadze N, Thomou T, Kirkland JL, Jensen MD (2010) Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring) 18:1875–1880

    Article  Google Scholar 

  6. Lee YH, Petkova AP, Granneman JG (2013) Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab 18:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sengenès C, Lolmède K, Zakaroff-Girard A, Busse R, Bouloumié A (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205:114–122

    Article  PubMed  Google Scholar 

  8. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  10. Carey VJ, Walters EE, Colditz GA et al (1997) Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. Nurses’ Health Study. Am J Epidemiol 145:614–619

    Article  CAS  PubMed  Google Scholar 

  11. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK et al (1982) Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 54:254–260

    Article  CAS  PubMed  Google Scholar 

  12. Tran TT, Yamamoto Y, Gesta S, Kahn CR (2008) Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 7:410–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee MJ, Fried SK (2014) Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. Methods Enzymol 538:49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lystedt E, Westergren H, Brynhildsen J, Lindh-Astrand L, Gustavsson J, Nystrom FH et al (2005) Subcutaneous adipocytes from obese hyperinsulinemic women with polycystic ovary syndrome exhibit normal insulin sensitivity but reduced maximal insulin responsiveness. Eur J Endocrinol 153:831–835

    Article  CAS  PubMed  Google Scholar 

  15. Hutley LJ, Herington AC, Shurety W, Cheung C, Vesey DA, Cameron DP, Prins JB (2001) Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab 281:E1037–E1044

    CAS  PubMed  Google Scholar 

  16. Hauner H, Röhrig K, Petruschke T (1995) Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on humanadipocyte development and function. Eur J Clin Invest 25(2):90–96

    Article  CAS  PubMed  Google Scholar 

  17. Dicker A, Ryden M, Naslund E, Muehlen IE, Wiren M, Lafontan M et al (2004) Effect of testosterone on lipolysis in human pre-adipocytes from different fat depots. Diabetologia 47:420–428

    Article  CAS  PubMed  Google Scholar 

  18. Yu G, ZE F, Wu X, Hebert T, Halvorsen YD, Buehrer BM et al (2011) Adipogenic differentiation of adipose-derived stem cells. Methods Mol Biol 702:193–200

    Article  CAS  PubMed  Google Scholar 

  19. Hutley LJ, Shurety W, Newell F, McGeary R, Pelton N, Grant J, Herington A, Cameron D, Whitehead J, Prins J (2004) Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes 53:3097–3106

    Article  CAS  PubMed  Google Scholar 

  20. Kakudo N, Shimotsuma A, Kusumoto K (2007) Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 359:239–244

    Article  CAS  PubMed  Google Scholar 

  21. Newell FS, Su H, Tornqvist H, Whitehead JP, Prins JB, Hutley LJ (2006) Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J 20:2615–2617

    Article  CAS  PubMed  Google Scholar 

  22. Skurk T, Ecklebe S, Hauner H (2007) A novel technique to propagate primary human preadipocytes without loss of differentiation capacity. Obesity (Silver Spring) 15:2925–2931

    Article  CAS  Google Scholar 

  23. Skurk T, Hauner H (2012) Primary culture of human adipocyte precursor cells: Expansion and differentiation. Methods Mol Biol 806:215–226

    Article  CAS  PubMed  Google Scholar 

  24. Widberg CH, Newell FS, Bachmann AW, Ramnoruth SN, Spelta MC, Whitehead JP, Hutley LJ, Prins JB (2009) Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes. Am J Physiol Endocrinol Metab 296:E121–E131

    Article  CAS  PubMed  Google Scholar 

  25. Akie TE, Cooper MP (2015) Determination of fatty acid oxidation and lipogenesis in mouse primary hepatocytes. J Vis Exp 102:e52982

    Google Scholar 

  26. Perez-Diaz S, Johnson LA, DeKroon RM, Moreno-Navarrete JM, Alzate O, Fernandez-Real JM, Maeda N, Arbones-Mainar JM (2014) Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J 28:3769–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. O’Rourke M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Baker, N.A., Muir, L.A., Lumeng, C.N., O’Rourke, R.W. (2017). Differentiation and Metabolic Interrogation of Human Adipocytes. In: Wu, J. (eds) Thermogenic Fat. Methods in Molecular Biology, vol 1566. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6820-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6820-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6819-0

  • Online ISBN: 978-1-4939-6820-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics