Skip to main content

Intracerebroventricular Delivery in Mice for Motor Neuron Diseases

  • Protocol
  • First Online:
Morpholino Oligomers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1565))

Abstract

The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO’s excellent pharmacological profile.

Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).

Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludolph AC, Brettschneider J, Weishaupt JH (2012) Amyotrophic lateral sclerosis. Curr Opin Neurol 25:530–535

    Article  CAS  PubMed  Google Scholar 

  2. D'Amico A, Mercuri E, Tiziano FD, Bertini E (2011) Spinal muscular atrophy. Orphanet J Rare Dis 2:6–71

    Google Scholar 

  3. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR (2008) Antisense masking of an hnRNPA1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82:834–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, Hua Y, Rigo F, Matson J, Hung G, Kaye EM, Shihabuddin LS, Krainer AR, Bennett CF, Cheng SH (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3(72):72ra18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nizzardo M, Simone C, Salani S, Ruepp MD, Rizzo F, Ruggieri M, Zanetta C, Brajkovic S, Moulton HM, Müehlemann O, Bresolin N, Comi GP, Corti S (2014) Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype. Clin Ther 36(3):340–356

    Article  CAS  PubMed  Google Scholar 

  6. Nizzardo M, Simone C, Rizzo F, Ulzi G, Ramirez A, Rizzuti M, Bordoni A, Bucchia M, Gatti S, Bresolin N, Comi GP, Corti S (2016) Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype. Sci Rep 6:21301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burglen L, Lefebvre S, Clermont O, Burlet P, Viollet L, Cruaud C, Munnich A, Melki J (1996) Structure and organization of the human survival motor neuron (SMN) gene. Genomics 32:479–482

    Article  CAS  PubMed  Google Scholar 

  8. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183

    Article  CAS  PubMed  Google Scholar 

  9. Vitte J, Fassier C, Tiziano FD, Dalard C, Soave S, Roblot N, Brahe C, Saugier-Veber P, Bonnefont JP, Melki J (2007) Refined characterization of the expression and stability of the SMN gene products. Am J Pathol 171:1269–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sendtner M (2010) Therapy development in spinal muscular atrophy. Nat Neurosci 7:795–799

    Article  Google Scholar 

  11. Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitrpant C, Porensky P, Zhou H, Price L, Muntoni F, Fletcher S, Wilton SD, Burghes AHM (2013) Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy. PLoS One 8(4):e62114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou H, Janghra N, Mitrpant C, Dickinson R, Anthony K, Price L, Eperon I, Wilton S, Morgan J, Muntoni F (2013) A novel morpholino oligomer targeting ISSN1 improves rescue of severe SMA transgenic mice. Hum Gene Ther 24(3):331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, Wilton SD, Burghes AHM (2012) A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21:1625–1638

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Meng J, Marrosu E, Janghra N, Morgan J, Muntoni F (2015) Repeated low doses of morpholino antisense oligomer: an intermediate mouse model of spinal muscular atrophy to explore the window of therapeutic response. Hum Mol Genet 24(22):6265–6277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Renton AE, Chio A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  17. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    Article  CAS  PubMed  Google Scholar 

  18. Rotunno MS, Bosco DA (2013) An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 7:253

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  CAS  PubMed  Google Scholar 

  20. Ezzi SA, Urushitani M, Julien JP (2007) Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem 102:170–178

    Article  PubMed  Google Scholar 

  21. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, Brown RH Jr (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13:1396–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A 109(13):5074–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433

    Article  CAS  PubMed  Google Scholar 

  24. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, Wancewicz EV, Bennett CF, Cleveland DW (2006) Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 116:2290–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Le TT, Pham LT, Butchbach ME, Zhang HL (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857

    Article  CAS  PubMed  Google Scholar 

  26. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  27. Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J, Fey RA, Gaus H, Hua Y, Grundy JS, Krainer AR, Henry SP, Bennett CF (2014) Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350(1):46–55

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by AriSLA, Pilot Grant ALSsiMO to M.N. and Telethon, GGP14025 to M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nizzardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nizzardo, M., Rizzuti, M. (2017). Intracerebroventricular Delivery in Mice for Motor Neuron Diseases. In: Moulton, H., Moulton, J. (eds) Morpholino Oligomers. Methods in Molecular Biology, vol 1565. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6817-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6817-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6815-2

  • Online ISBN: 978-1-4939-6817-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics