Skip to main content

Use of Morpholino Oligomers for Pretargeting

  • Protocol
  • First Online:
Morpholino Oligomers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1565))

Abstract

Differing from the conventional direct-targeting strategy in which a probe or payload is directly loaded onto a targeting molecule that binds to the native target, pretargeting is an improved targeting strategy. It converts the native target to an artificial target specific for a secondary targeting molecule loaded with the probe or payload (effector). The effector is small and does not accumulate in normal tissues, which accelerates the targeting process and generates high target to nontarget ratios. DNA/cDNA analogs can serve as the recognition pair, i.e., the artificial target and the secondary targeting effector. Morpholino oligomers are so far the most investigated and the most successful DNA/cDNA analog recognition pairs for pretargeting. Herein, we describe the pretargeting principles, the pretargeting strategy using Morpholino oligomers, and the preclinical success so far achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pressman D, Korngold L (1953) The in vivo localization of anti-Wagner osteogenic-sarcoma antibodies. Cancer 6:619–612

    Article  CAS  PubMed  Google Scholar 

  2. Reardan DT, Meares CF, Goodwin DA et al (1985) Antibodies against metal chelates. Nature 316(6025):265–268

    Article  CAS  PubMed  Google Scholar 

  3. Hnatowich DJ, Virzi F, Rusckowski M (1987) Investigations of avidin and biotin for imaging applications. J Nucl Med 28:1294–1302

    CAS  PubMed  Google Scholar 

  4. Liu G, Liu C, Zhang S, He J, Liu N, Gupta S, Rusckowski M, Hnatowich DJ (2003) Investigations of technetium-99 m morpholino pretargeting in mice. Nucl Med Commun 24:697–705

    Article  CAS  PubMed  Google Scholar 

  5. Liu G, Dou S, Akalin A, Rusckowski M, Streeter PR, Shultz LD, Greiner DL (2012) Pretargeting vs direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody. Nucl Med Biol 39:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu G (2016) A clearance step will become increasingly crucial for pretargeted tumor therapy when tumor accumulation is improved. J Cancer Clin Trials 1:2

    Google Scholar 

  7. Goldenberg DM, Chang CH, Rossi EA, JW MB (2012) Sharkey RM Pretargeted molecular imaging and radioimmunotherapy. Theranostics 2:523–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van de Watering FC, Rijpkema M, Robillard M, Oyen WJ, Boerman OC (2014) Pretargeted imaging and radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry. Front Med (Lausanne) 1:44

    Google Scholar 

  9. Kuijpers WH, Bos ES, Kaspersen FM, Veeneman GH, van Boeckel CA (1993) Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem 4:94–102

    Article  CAS  PubMed  Google Scholar 

  10. Hnatowich DJ (1997) Pharmacokinetics considerations in the development of oligomers as radiopharmaceuticals. Q J Nucl Med 41:91–100

    CAS  PubMed  Google Scholar 

  11. Liu G, He J, Zhang S, Liu C, Rusckowski M, Hnatowich DJ (2002) Cytosine residues influence kidney accumulations of 99mTc-labeled morpholino oligomers. Antisense Nucleic Acid Drug Dev 12:393–398

    Article  CAS  PubMed  Google Scholar 

  12. Rossin R, Verkerk PR, van den Bosch SM, Vulders RCM, Verel I, Lub J, MS R (2010) In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed 49:3375–3378

    Article  CAS  Google Scholar 

  13. Förster C, Bergmann R, Schubert M, Walther M, Pietzsch J, Vonhoff S, Klussmann S, Pietzsch H-J, Steinbach J (2010) Radiolabeled L-oligonucleotides with tunable pharmacokinetics—a suitable complementary system for pretargeting technologies. Nucl Med Biol 37:706

    Article  Google Scholar 

  14. Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discov Today 20:147–155

    Article  CAS  PubMed  Google Scholar 

  15. Liu G, Hnatowich DJ (2008c) A semiempirical model of tumor pretargeting. Bioconjug Chem 19:2095–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu G, He J, Dou S, Gupta S, Rusckowski M, Hnatowich DJ (2005) Further investigations of morpholino pretargeting in mice—establishing quantitative relations in tumor. Eur J Nucl Med Mol Imaging 32:1115–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu G (2013) Rules of thumb for maximum percent tumor accumulation. Nucl Med Biol 40:865–867

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu G, Dou S, He J, Liu X, Rusckowski M, Hnatowich DJ (2007) Predicting the biodistribution of radiolabeled cMORF effector in MORF-pretargeted mice. Eur J Nucl Med Mol Imaging 34:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu G, Dou S, Pretorius PH et al (2010) Tumor pretargeting in mice using MORF conjugated CC49 antibody and radiolabeled complimentary cMORF effector. Q J Nucl Med Mol Imaging 54:333–340

    CAS  PubMed  Google Scholar 

  20. Liu G, He J, Dou S, Gupta S, Vanderheyden J-L, Rusckowski M, Hnatowich DJ (2004) Pretargeting in tumored mice with radiolabeled morpholino oligomer showing low kidney uptake. Eur J Nucl Med Mol Imaging 31:417–424

    Article  CAS  PubMed  Google Scholar 

  21. Liu G, Dou S, Rusckowski M, Hnatowich DJ (2008) An experimental and theoretical evaluation of the influence of pretargeting antibody on the tumor accumulation of effector. Mol Cancer Ther 7:1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu G, Dou S, Cheng D, Leif J, Rusckowski M, Streeter PR, Shultz LD, Hnatowich D, Greiner D (2011) Human islet cell MORF/cMORF pretargeting in a xenogeneic murine transplant model. Mol Pharm 8:767–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, Cardillo TM, McBride WJ, Chang CH, Boerman OC, Goldenberg DM (2012) A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 53:1625–1632

    Article  CAS  PubMed  Google Scholar 

  24. Behr TM, Becker WS, Sharkey RM, Juweid ME, Dunn RM, Bair HJ, Wolf FG, Goldenberg DM (1996) Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med 37:829–833

    CAS  PubMed  Google Scholar 

  25. Honarvar H, Westerlund K, Altai M, Sandström M, Orlova A, Tolmachev V, Karlström AE (2016) Feasibility of affibody molecule-based PNA-mediated radionuclide pretargeting of malignant tumors. Theranostics 6:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Altai M, Perols A, Tsourma M, Mitran B, Honarvar H, Robillard M, Rossin R, Ten Hoeve W, Lubberink M, Orlova A, Karlström AE, Tolmachev V (2016) Feasibility of affibody-based bioorthogonal chemistry-mediated radionuclide pretargeting. J Nucl Med 57:431–436

    Article  PubMed  Google Scholar 

  27. Dou S, Liu G (2016) A method to characterize in vivo binding of morpholinos for drug design. J Drug Discov Develop and Deliv 3:1018

    Google Scholar 

  28. Liu G, Zhang S, He J, Liu N, Gupta S, Rusckowski M, Hnatowich DJ (2002) The influence of chain length and base sequence on the pharmacokinetic behavior of 99mTc-morpholinos in mice. Q J Nucl Med 46:233–243

    CAS  PubMed  Google Scholar 

  29. Axworthy DB, Reno JM, Hylarides MD, Mallett RW, Theodore LJ, Gustavson LM, Su F, Hobson LJ, Beaumier PL, Fritzberg AR (2000) Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A 97:1802–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheal SM, Yoo B, Boughdad S, Punzalan B, Yang G, Dilhas A, Torchon G, Pu J, Axworthy DB, Zanzonico P, Ouerfelli O, Larson SM (2014) Evaluation of glycodendron and synthetically modified dextran clearing agents for multistep targeting of radioisotopes for molecular imaging and radioimmunotherapy. Mol Pharm 11:400–416

    Article  CAS  PubMed  Google Scholar 

  31. Dou S, Virostko J, Greiner DL, Powers AC, Liu G (2015) Quantitative correlation of in vivo properties with in vitro assay results: the in vitro binding of a biotin-DNA analogue modifier with streptavidin predicts the in vivo avidin-induced clearability of the analogue-modified antibody. Mol Pharm 12:3097–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dou S, Virostko J, Rusckowski M, Greiner DL, Powers AC, Liu G (2014) Differentiation between temporary and real non-clearabilityof biotinylated IgG antibody by avidin in mice. Front Pharmacol 5:172

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu G, Dou S, Chen X, Chen L, Liu X, Rusckowski M, Hnatowich DJ (2010) Adding a clearing agent to pretargeting does not lower the tumor accumulation of the effector as predicted. Cancer Biother Radiopharm 25:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu G, Dou S, Baker S, Akalin A, Cheng D, Chen L, Rusckowski M, Hnatowich DJ (2010) A preclinical 188Re tumor therapeutic investigation using MORF/cMORF pretargeting and an antiTAG-72 antibody CC49. Cancer Biol Ther 10:767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu G, Mang’era K, Liu N, Gupta S, Rusckowski M, Hnatowich DJ (2002) Tumor pretargeting in mice using technetium-99 m labeled morpholinos, a DNA analog. J Nucl Med 43:384–391

    CAS  PubMed  Google Scholar 

  36. Liu G, Dou S, Mardirossian G, He J, Zhang S, Liu X, Rusckowski M, Hnatowich DJ (2006) Successful radiotherapy of tumor in pretargeted mice by 188Re-radiolabeled phosphorodiamidate morpholino oligomer, a synthetic DNA analogue. Clin Cancer Res 12:4958–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu G, Cheng D, Dou S, Chen X, Liang M, Pretorius H, Rusckowski M, Hnatowich DJ (2009) Replacing 99mTc with 111In improves MORF/cMORF pretargeting by reducing intestinal accumulation. Mol Imaging Biol 11:303–307

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu G, Dou S, Liu Y, Wang Y, Rusckowski M, Hnatowich DJ (2011) 90Y labeled phosphorodiamidate morpholino oligomer for pretargeting radiotherapy. Bioconjug Chem 22:2539–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He J, Rusckowski M, Wang Y, Dou S, Liu X, Zhang S, Liu G, Hnatowich DJ (2007) Optical pretargeting of tumor with fluorescent MORF oligomers. Mol Imaging Biol 9:17–23

    Article  PubMed  Google Scholar 

  40. Liu G, Dou S, Yin D, Squires S, Liu X, Wang Y, Rusckowski M, Hnatowich DJ (2007) A novel pretargeting method for measuring antibody internalization in tumor cells. Cancer Biother Radiopharm 22:33–39

    Article  PubMed  PubMed Central  Google Scholar 

  41. He J, Liu G, Dou S, Gupta S, Rusckowski M, Hnatowich DJ (2007) An improved method for covalently conjugating morpholino oligomers to anticancer antibodies. Bioconjug Chem 18:983–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winnard P Jr, Chang F, Rusckowski M, Mardirossian G, Hnatowich DJ (1997) Preparation and use of NHS-MAG3 for technetium-99 m labeling of DNA. Nucl Med Biol 24:425–432

    Article  CAS  PubMed  Google Scholar 

  43. Liu G, Zhang S, He J, Zhu Z, Rusckowski M, Hnatowich DJ (2002) Improving the labeling of S-acetyl NHS-MAG3 conjugated morpholino oligomers. Bioconjug Chem 13:893–897

    Article  CAS  PubMed  Google Scholar 

  44. Liu G, Dou S, He J, Yin D, Gupta S, Zhang S, Wang Y, Rusckowski M, Hnatowich DJ (2006) Radiolabeling of MAG3-morpholino oligomers with 188Re at high labeling efficiency and specific radioactivity for tumor pretargeting. Appl Radiat Isot 64:971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Liu G, Hnatowich DJ (2006) Methods for MAG3 conjugation and 99mTc radiolabeling of biomolecules. Nat Protoc 1:1477–1480

    Article  CAS  PubMed  Google Scholar 

  46. Liu G, Dou S, Liu Y, Chen L, Cheng D, Greiner D, Rusckowski M, Hnatowich DJ (2011) Unexpected side products in the conjugation of an amine-derivatized morpholino oligomer with p-isothiocyanate benzyl DTPA and their removal. Nucl Med Biol 38:159–163

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, G. (2017). Use of Morpholino Oligomers for Pretargeting. In: Moulton, H., Moulton, J. (eds) Morpholino Oligomers. Methods in Molecular Biology, vol 1565. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6817-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6817-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6815-2

  • Online ISBN: 978-1-4939-6817-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics