Skip to main content

The Primary Root of Sorghum bicolor (L. Moench) as a Model System to Study Brassinosteroid Signaling in Crops

  • Protocol
  • First Online:
Brassinosteroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1564))

Abstract

Roots anchor plants to the soil and are essential for a successful plant growth and adaptation to the environment. Research on the primary root in the plant model system Arabidopsis thaliana has yielded important advances in the molecular and cellular understanding of root growth and development. Several studies have uncovered how the hormones brassinosteroids (BRs) control cell cycle and differentiation programs through different cell-specific signaling pathways that are key for root growth and development. Currently, an important challenge resides in the translation of the current knowledge on Arabidopsis roots into agronomically valuable species to improve the agricultural production and to meet the food security goals of the millennium. In this chapter, we characterize the primary root apex of the cereal Sorghum bicolor (L. Moench) (sorghum), analyze the physiological response of sorghum roots to BRs, and examine the phylogeny of the BRASSINOSTEROID INSENSITIVE1-like receptor family in Arabidopsis and its orthologous genes in sorghum. Overall, we support the use of sorghum as a suitable crop model species for the study of BR signaling in root growth and development. The methods presented enable any laboratory worldwide to use sorghum primary roots as a favorite organ for the study of growth and development in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aloni R, Griffith M (1991) Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 184:123–129

    Article  CAS  PubMed  Google Scholar 

  2. Hochholdinger F, Park WJ, Sauer M et al (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    Article  CAS  PubMed  Google Scholar 

  3. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  4. Price HJ, Dillon SL, Hodnett G et al (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swigoňová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  PubMed Central  Google Scholar 

  6. Howe A, Sato S, Dweikat I et al (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  7. Blomstedt CK, Gleadow RM, O’Donnell N et al (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10:54–66

    Article  PubMed  Google Scholar 

  8. Nida H, Blum S, Zielinski D, Srivastava DA, Elbaum R, Xin Z, Erlich Y, Fridman E, Shental N (2016) Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J 86:349–359

    Article  CAS  PubMed  Google Scholar 

  9. Xin Z, Wang ML, Barkley NA et al (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  10. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  11. Jenks MA, Joly RJ, Peters PJ et al (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jordan WR, Shouse PJ, Blum A et al (1984) Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop Sci 24:1168–1173

    Article  Google Scholar 

  13. Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    Article  CAS  PubMed  Google Scholar 

  14. Borrell AK, Hammer GL, Henzell RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Article  Google Scholar 

  15. Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65:6251–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burow GB, Franks CD, Acosta-Martinez V et al (2008) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theor Appl Genet 118:423–431

    Article  PubMed  Google Scholar 

  17. Kebede H, Subudhi PK, Rosenow DT et al (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  18. Sanchez AC, Subudhi PK, Rosenow DT et al (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Han Y, Lv P et al (2014) Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench). Breed Sci 64:193–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hetz W, Hochholdinger F, Schwall M et al (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857

    Article  CAS  Google Scholar 

  21. Salih AA, Ali IA, Lux A et al (1999) Rooting, water uptake, and xylem structure adaptation to drought of two sorghum cultivars. Crop Sci 39:168–173

    Article  Google Scholar 

  22. Mace ES, Singh V, Van Oosterom EJ et al (2011) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  PubMed  Google Scholar 

  23. Rajkumar, Fakrudin B, Kavil SP et al (2013) Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants 19:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fàbregas N, Li N, Boeren S et al (2013) The BRASSINOSTEROID INSENSITIVE1-LIKE3 signalosome complex regulates Arabidopsis root development. Plant Cell 25:3377–3388

    Article  PubMed  PubMed Central  Google Scholar 

  25. González-García MP, Vilarrasa-Blasi J, Zhiponova M et al (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859

    Article  PubMed  Google Scholar 

  26. Vilarrasa-Blasi J, González-García MP, Frigola D et al (2014) Regulation of plant stem cell quiescence by a brassinosteroid signaling module. Dev Cell 30:36–47

    Article  CAS  PubMed  Google Scholar 

  27. Kinoshita T, Caño-Delgado A, Seto H et al (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171

    Article  CAS  PubMed  Google Scholar 

  28. Mantilla Perez MB, Zhao J, Yin Y et al (2014) Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor Appl Genet 127:2645–2662

    Article  CAS  PubMed  Google Scholar 

  29. Kir G, Ye H, Nelissen H et al (2015) RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol 169:826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Truernit E, Bauby H, Dubreucq B et al (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20:1494–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016–2019 (SEV-2015-0533).” N.F. is indebted to the “Fundación Renta Corporation” charity and F.L-E and D.B-E. are funded by a BIO2013-43873 grant and a “Retos Colaboración” project (RTC-2014-1916-2) from the Spanish Ministry of Economy and Competitiveness, respectively. A.I.C.-D. is the recipient of a European Research Council, ERC Consolidator Grant (ERC-2015-CoG – 683163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Caño-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Blasco-Escámez, D., Lozano-Elena, F., Fàbregas, N., Caño-Delgado, A.I. (2017). The Primary Root of Sorghum bicolor (L. Moench) as a Model System to Study Brassinosteroid Signaling in Crops. In: Russinova, E., Caño-Delgado, A. (eds) Brassinosteroids. Methods in Molecular Biology, vol 1564. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6813-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6813-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6811-4

  • Online ISBN: 978-1-4939-6813-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics