Skip to main content

Targeted Ablation Using Laser Nanosurgery

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

Laser-mediated dissection methods have been used for many years to micro-irradiate biological samples, but recent technological progress has rendered this technique more precise, powerful, and easy to use. Today pulsed lasers can be operated with diffraction limited, sub-micrometer precision to ablate intracellular structures. Here, we discuss laser nanosurgery setups and the instrumentation in our laboratory. We describe how to use this technique to ablate cytoskeletal elements in living cells. We also show how this technique can be used in multicellular organisms, to micropuncture and/or ablate cells of interest and finally how to monitor a successful laser nanosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Amy RL, Storb R (1965) Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study. Science 150(3697):756–758

    Article  CAS  PubMed  Google Scholar 

  2. Berns W, Strahs R (1979) Laser microirradiation of stress fibers and intermediate filaments in non-muscle cells from cultured rat heart. Exp Cell Res 119(2)

    Google Scholar 

  3. Ronchi P, Terjung S, Pepperkok R (2012) At the cutting edge: applications and perspectives of laser nanosurgery in cell biology. Biol Chem 393(April):235–248

    CAS  PubMed  Google Scholar 

  4. Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E et al (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122(11):1928–1928

    Article  CAS  Google Scholar 

  5. Rauzi M, Verant P, Lecuit T, Lenne P-F (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10(12):1401–1410

    Article  CAS  PubMed  Google Scholar 

  6. Tängemo C, Ronchi P, Colombelli J, Haselmann U, Simpson JC, Antony C et al (2011) A novel laser nanosurgery approach supports de novo Golgi biogenesis in mammalian cells. J Cell Sci 124(Pt 6):978–987

    Article  PubMed  Google Scholar 

  7. Ronchi P, Tischer C, Acehan D, Pepperkok R (2014) Positive feedback between golgi membranes, microtubules and ER-exit sites directs golgi de novo biogenesis. J Cell Sci 4:4620–4633

    Article  Google Scholar 

  8. Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432(7019):822

    Article  CAS  PubMed  Google Scholar 

  9. Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals lacking beta-spectrin. J Cell Biol 176(3):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929

    Article  CAS  PubMed  Google Scholar 

  11. Chown MG, Kumar S (2007) Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale. Int J Nanomedicine 2(3):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khodjakov A, La Terra S, Chang F (2004) Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B. Curr Biol 14(15):1330–1340

    Article  CAS  PubMed  Google Scholar 

  13. Shimada T, Watanabe W, Matsunaga S, Higashi T, Ishii H, Fukui K et al (2005) Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator. Opt Express 13(24):9869–9880

    Article  PubMed  Google Scholar 

  14. Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31(3):365–374

    Article  PubMed  Google Scholar 

  15. Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51(4):589–599

    Article  CAS  PubMed  Google Scholar 

  16. Bargmann CI, Horvitz HR (1991) Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251(4998):1243–1246

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110(1):17–72

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364(6435):337–341

    Article  CAS  PubMed  Google Scholar 

  19. Avery L, Horvitz HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3(4):473–485

    Article  CAS  PubMed  Google Scholar 

  20. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527

    Article  CAS  PubMed  Google Scholar 

  21. Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5(4):956–964

    CAS  PubMed  Google Scholar 

  22. Gabel CV, Gabel H, Pavlichin D, Kao A, Clark DA, Samuel ADT (2007) Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J Neurosci 27(28):7586–7596

    Article  CAS  PubMed  Google Scholar 

  23. Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102(9):3184–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440(7084):684–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsalik EL, Hobert O (2003) Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56(2):178–197

    Article  PubMed  Google Scholar 

  26. Ward A, Liu J, Feng Z, Xu XZS (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11(8):916–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Durdu S, Iskar M, Revenu C, Schieber N, Kunze A, Bork P et al (2014) Luminal signalling links cell communication to tissue architecture during organogenesis. Nature 515(7525):120–124

    Article  CAS  PubMed  Google Scholar 

  28. Bedzhov I, Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156(5):1032–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harding MJ, McGraw HF, Nechiporuk A (2014) The roles and regulation of multicellular rosette structures during morphogenesis. Development 141(13):2549–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500(7461):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bishop D, Nikić I, Brinkoetter M, Knecht S, Potz S, Kerschensteiner M et al (2011) Near-infrared branding efficiently correlates light and electron microscopy. Nat Methods 8(7):568–570

    Article  CAS  PubMed  Google Scholar 

  32. Karreman MA, Mercier L, Schieber NL, Shibue T, Schwab Y, Goetz JG (2014) Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points. PLoS One 9(12):e114448

    Article  PubMed  PubMed Central  Google Scholar 

  33. Colombelli J, Tängemo C, Haselman U, Antony C, Stelzer EHK, Pepperkok R et al (2008) A correlative light and electron microscopy method based on laser micropatterning and etching. Methods Mol Biol 457:203–213

    Article  CAS  PubMed  Google Scholar 

  34. Ronchi P, Pepperkok R (2013) Golgi depletion from living cells with laser nanosurgery. Methods Cell Biol 118: 311–324. 1st edn

    Google Scholar 

  35. Kolotuev I, Bumbarger DJ, Labouesse M, Schwab Y (2012) Targeted ultramicrotomy: a valuable tool for correlated light and electron microscopy of small model organisms. Methods Cell Biol 111:203–222

    Article  CAS  PubMed  Google Scholar 

  36. Horneffer V, Linz N, Vogel A (2007) Principles of laser-induced separation and transport of living cells. J Biomed Opt 12(5):54016

    Article  Google Scholar 

  37. Solon J, Kaya-Çopur A, Colombelli J, Brunner D (2009) Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137(7):1331–1342

    Article  PubMed  Google Scholar 

  38. Caussinus E, Colombelli J, Affolter M (2008) Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr Biol 18(22):1727–1734

    Article  CAS  PubMed  Google Scholar 

  39. Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M et al (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 9(2):504–513

    Article  CAS  PubMed  Google Scholar 

  40. Raabe I, Vogel SK, Peychl J, Tolić-Nørrelykke IM (2009) Intracellular nanosurgery and cell enucleation usinga picosecond laser. J Microsc 234:1–8

    Article  CAS  PubMed  Google Scholar 

  41. Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A et al (2014) Mechanism of Ca(2)(+)-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 5:5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Perez F, Piel M (2015) Laser induced wounding of the plasma membrane and methods to study the repair process. Methods Cell Biol 125:391–408

    Article  PubMed  Google Scholar 

  43. Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A et al (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13(7):771–778

    Article  CAS  PubMed  Google Scholar 

  44. Rauzi M, Lenne P-F, Lecuit T (2010) Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468(7327):1110–1114

    Article  CAS  PubMed  Google Scholar 

  45. Colombelli J, Solon J (2013) Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res 352(1):133–147

    Article  PubMed  Google Scholar 

  46. Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg CP (2015) UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. Methods Mol Biol 1189:219–235

    Article  PubMed  Google Scholar 

  47. Engelbrecht CJ, Greger K, Reynaud EG, Krzic U, Colombelli J, Stelzer EH (2007) Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). Opt Express 15(10):6420–6430

    Article  PubMed  Google Scholar 

  48. Rauzi M, Krzic U, Saunders TE, Krajnc M, Ziherl P, Hufnagel L et al (2015) Embryo-scale tissue mechanics during Drosophila gastrulation movements. Nat Commun 6:8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 81:1015–1047

    Article  CAS  Google Scholar 

  50. Sacconi L, Tolić-Nørrelykke IM, Antolini R, Pavone FS (2005) Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope. J Biomed Opt 10(1):14002

    Article  PubMed  Google Scholar 

  51. Rauzi M, Verant P, Lecuit T, Lenne P-F (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10(12):1401–1410

    Article  CAS  PubMed  Google Scholar 

  52. Colombelli J, Reynaud EG, Rietdorf J, Pepperkok R, Stelzer EHK (2005) In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6(12):1093–1102

    Article  CAS  PubMed  Google Scholar 

  53. Colombelli J, Solon J (2013) Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res 352(1):133–147

    Article  PubMed  Google Scholar 

  54. Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW, Liu Q et al (2014) Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev Cell 28(3):295–309

    Article  CAS  PubMed  Google Scholar 

  55. Travers RJ, Shenoi RA, Kalathottukaren MT, Kizhakkedathu JN, Morrissey JH (2014) Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis. Blood 124(22):3183–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sumida GM, Tomita TM, Shih W, Yamada S (2011) Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion. BMC Cell Biol 12(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vogel A, Horneffer V, Lorenz K, Linz N, Huttmann G, Gebert A (2007) Principles of laser microdissection and catapulting of histologic specimens and live cells. Methods Cell Biol 82:153–205

    Article  CAS  PubMed  Google Scholar 

  58. Vogel A, Noack J (2001) Numerical simulations of optical breakdown for cellular surgery at nanosecond to femtosecond time scales. In: Proc. SPIE 4260, Optical Diagnostics of Living Cells IV, p 83–93. Accessed from http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=900637. doi:10.1117/12.426762

  59. Kuetemeyer K, Rezgui R, Lubatschowski H, Heisterkamp A (2010) Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery. Biomed Opt Express 1(2):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Botvinick EL, Venugopalan V, Shah JV, Liaw LH, Berns MW (2004) Controlled ablation of microtubules using a picosecond laser. Biochem J 87:4203–4212

    CAS  Google Scholar 

  61. Aist JR, Liang H, Berns MW (1993) Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J Cell Sci 104(4):1207–1216

    PubMed  Google Scholar 

  62. Heisterkamp A, Maxwell IZ, Mazur E, Underwood JM, Nickerson JA, Kumar S et al (2005) Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Express 13:3690–3696

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Pepperkok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gayathri Vegesna, N.V., Ronchi, P., Durdu, S., Terjung, S., Pepperkok, R. (2017). Targeted Ablation Using Laser Nanosurgery. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics