Skip to main content

Imaging of Brain Slices with a Genetically Encoded Voltage Indicator

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

Functional fluorescence microscopy of brain slices using voltage sensitive fluorescent proteins (VSFPs) allows large scale electrophysiological monitoring of neuronal excitation and inhibition. We describe the equipment and techniques needed to successfully record functional responses optical voltage signals from cells expressing a voltage indicator such as VSFP Butterfly 1.2. We also discuss the advantages of voltage imaging and the challenges it presents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  CAS  PubMed  Google Scholar 

  2. Obien MEJ, Deligkaris K, Bullmann T et al (2015) Revealing neuronal function through microelectrode array recordings. Front Neurosci 8:423

    Article  PubMed  PubMed Central  Google Scholar 

  3. Knöpfel T, Díez-García J, Akemann W (2006) Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosci 29:160–166

    Article  PubMed  Google Scholar 

  4. Knöpfel T (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 13:687–700

    PubMed  Google Scholar 

  5. Franconville R, Revet G, Astorga G et al (2011) Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo. J Neurophysiol 106:1793–1805

    Article  CAS  PubMed  Google Scholar 

  6. Antic SD, Empson RM, Knöpfel T (2016) Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol. doi:10.1152/jn.00226.2016

    PubMed  PubMed Central  Google Scholar 

  7. Hoover E, Squier J (2013) Advances in multiphoton microscopy technology. Nat Photonics 7:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flusberg BA, Cocker ED, Piyawattanametha W et al (2005) Fiber-optic fluorescence imaging. Nat Methods 2:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murray TA, Levene MJ (2012) Singlet gradient index lens for deep in vivo multiphoton microscopy. J Biomed Opt 17:021106

    Article  PubMed  Google Scholar 

  10. Murayama M, Pérez-Garci E, Lüscher HR et al (2007) Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J Neurophysiol 98:1791–1805

    Article  PubMed  Google Scholar 

  11. Carandini M, Shimaoka D, Rossi LF et al (2015) Imaging the awake visual cortex with a genetically encoded voltage indicator. J Neurosci 35:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  13. Akemann W, Mutoh H, Perron A et al (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 108:2323–2337

    Article  CAS  PubMed  Google Scholar 

  14. Kinosita K, Itoh H, Ishiwata S et al (1991) Dual-view microscopy with a single camera: Real-time imaging of molecular orientations and calcium. J Cell Biol 115:67–73

    Article  CAS  PubMed  Google Scholar 

  15. Haga T, Takahashi S, Sonehara T et al (2011) Dual-view imaging system using a wide-range dichroic mirror for simultaneous four-color single-molecule detection. Anal Chem 83:6948–6955

    Article  CAS  PubMed  Google Scholar 

  16. Ting JT, Daigle TL, Chen Q et al (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol 1183:221–242

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/L016737/1]. We would like to thank Elisa Ciglieri, Amanda Foust, Taylor Lyons, and Chenchen Song for their very helpful comments and advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knöpfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Quicke, P., Barnes, S.J., Knöpfel, T. (2017). Imaging of Brain Slices with a Genetically Encoded Voltage Indicator. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics