Three-Dimensional Live Imaging of Filamentous Fungi with Light Sheet-Based Fluorescence Microscopy (LSFM)

  • Francesco PampaloniEmail author
  • Laura Knuppertz
  • Andrea Hamann
  • Heinz D. Osiewacz
  • Ernst H. K. Stelzer
Part of the Methods in Molecular Biology book series (MIMB, volume 1563)


We describe a method for the three-dimensional live imaging of filamentous fungi with light sheet-based fluorescence microscopy (LSFM). LSFM provides completely new opportunities to investigate the biology of fungal cells and other microorganisms with high spatial and temporal resolution. As an example, we study the established aging model Podospora anserina. The protocol explains the mounting of the live fungi for the light sheet imaging, the imaging procedure and illustrates basic image processing of data.

Key words

Advanced light microscopy Light sheet-based fluorescence microscopy Live cell imaging LSFM SPIM DSLM Podospora anserina Ascomycetes Mycology Microbiology Aging model Autophagy 



The authors thank the LOEWE initiative of the Federal State of Hessen (Ub-Net, speaker Ivan Dikic) and the Deutsche Forschungsgemeinschaft (DFG, Os75/15-1, and Excellenzcluster für Makromolekulare Komplexe, CEF-MC II, EXC 115, speaker Volker Doetsch) for financial support.


  1. 1.
    Hickey, P. C., Swift, S. R., Roca, M. G. & Read, N. D. (2004) Microbial imaging. Methods Microbiol 34, Elsevier, p. 63–87Google Scholar
  2. 2.
    Hickey PC, Read ND (2009) Imaging living cells of Aspergillus in vitro. Med Mycol 47(Suppl 1):S110–S119CrossRefPubMedGoogle Scholar
  3. 3.
    Dahms, T. E. S., Czymmek, K. J. (eds) (2015) Advanced microscopy in mycology. Springer. doi: 10.1007/978–3–319-22437-4Google Scholar
  4. 4.
    Stelzer EHK (2015) Light-sheet fluorescence microscopy for quantitative biology. Nat Methods 12:23–26CrossRefPubMedGoogle Scholar
  5. 5.
    Rizet G (1953) Impossibility of obtaining uninterrupted and unlimited multiplication of the ascomycete Podospora anserina. C. R. Hebd Seances Acad Sci 237:838–840Google Scholar
  6. 6.
    Esser K (1974) Podospora anserina. In: King, RC (ed) Handbook of Genetics. Plenum Press, New York, 531–551Google Scholar
  7. 7.
    Osiewacz H (1996) Genetic analysis of senescence in Podospora anserina. In: Bos CJ (ed) Fungal Genetics. Marcel Dekker, New York, 317–335Google Scholar
  8. 8.
    Hamann A, Krause K, Werner A, Osiewacz HD (2005) A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina. Curr Genet 48:270–275CrossRefPubMedGoogle Scholar
  9. 9.
    Osiewacz HD, Hamann A, Zintel S (2013) Assessing organismal aging in the filamentous fungus Podospora anserina. Methods Mol Biol 965:439–462Google Scholar
  10. 10.
    Wiemer M, Grimm C, Osiewacz HD (2016) Molecular control of fungal senescence and longevity. In: Wendland J (ed) The Mycota I, growth, differentiation and sexuality, 3rd edn. Springer, Switzerland, 155–181CrossRefGoogle Scholar
  11. 11.
    Knuppertz L, Osiewacz HD (2016) Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 153:30–40CrossRefPubMedGoogle Scholar
  12. 12.
    Silar P, Lalucque H, Vierny C (2001) Cell degeneration in the model system Podospora anserina. Biogerontology 2:1–17CrossRefPubMedGoogle Scholar
  13. 13.
    Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD (2014) Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 10(5):822–834CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gitai Z (2009) New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. Curr Opin Microbiol 12:341–346CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kentner D, Sourjik V (2010) Use of fluorescence microscopy to study intracellular signaling in bacteria. Annu Rev Microbiol 64:373–390CrossRefPubMedGoogle Scholar
  16. 16.
    Thorn K (2016) A quick guide to light microscopy in cell biology. Mol Biol Cell 27:219–222CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Toomre D, Pawley J (2006) Disk-scanning confocal microscopy, Handb Biol confocal Microsc. Springer, New York, pp. 221–238Google Scholar
  18. 18.
    Carlton PM, Boulanger J, Kervrann C, Sibarita JB, Salamero J, Gordon-Messer S et al (2010) Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc Natl Acad Sci 107(37):16016–16022CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009CrossRefPubMedGoogle Scholar
  20. 20.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069CrossRefPubMedGoogle Scholar
  21. 21.
    Keller PJ, Stelzer EH (2008) Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy. Curr Opin Neurobiol 18(6):624–632CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Z, Keller PJ (2016) Emerging Imaging and Genomic Tools for Developmental Systems Biology. Dev Cell 36:597–610CrossRefPubMedGoogle Scholar
  23. 23.
    Keller PJ et al (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7:637–642CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385CrossRefPubMedGoogle Scholar
  25. 25.
    Strobl F, Schmitz A, Stelzer EHK (2015) Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 10:1486–1507CrossRefPubMedGoogle Scholar
  26. 26.
    Strobl F, Stelzer EHK (2014) Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 141:2331–2338CrossRefPubMedGoogle Scholar
  27. 27.
    Pampaloni F, Ansari N, Stelzer EHK (2013) High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352:161–177CrossRefPubMedGoogle Scholar
  28. 28.
    Pampaloni F, Berge U, Marmaras A, Horvath P, Kroschewski R, Stelzer EH (2014) Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr Biol 6(10):988–998CrossRefGoogle Scholar
  29. 29.
    Pampaloni F, Chang B-J, Stelzer EHK (2015) Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res 360:129–141CrossRefPubMedGoogle Scholar
  30. 30.
    Pampaloni, F., Richa, R., Ansari, N., & Stelzer, E. H. (2015). Live spheroid formation recorded with light sheet-based fluorescence microscopy. Advanced fluorescence microscopy: methods and protocols. 43–57.Google Scholar
  31. 31.
    Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845CrossRefPubMedGoogle Scholar
  32. 32.
    Greger K, Swoger J, Stelzer EHK (2007) Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum 78(2):023705CrossRefPubMedGoogle Scholar
  33. 33.
    Huisken J, Stainier DYR (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32(17):2608CrossRefPubMedGoogle Scholar
  34. 34.
    Hyde J, MacNicol M, Odle A, Garcia-Rill E (2014) The use of three-dimensional printing to produce in vitro slice chambers. J Neurosci Methods 238:82–87CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Francesco Pampaloni
    • 1
    Email author
  • Laura Knuppertz
    • 2
  • Andrea Hamann
    • 2
  • Heinz D. Osiewacz
    • 2
  • Ernst H. K. Stelzer
    • 1
  1. 1.Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS)Goethe Universität Frankfurt am MainFrankfurt am MainGermany
  2. 2.Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of BiosciencesGoethe Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations