Skip to main content

Fluorescence-Based High-Throughput and Targeted Image Acquisition and Analysis for Phenotypic Screening

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

Applying the right acquisition method in a fluorescence imaging-based screening context is of great importance to obtain an appropriate readout and to select the right scale of the screen. In order to save imaging time and data, we have developed routines for multiscale targeted imaging, providing both a broad overview of a sample and additional in-depth information for targets of interest identified within the screen. These objects can be identified and acquired on-the-fly by an interconnection of image acquisition and image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J (2006) High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3(5):385–390. doi:10.1038/nmeth876

    Article  CAS  PubMed  Google Scholar 

  2. Neumann B, Walter T, Hériché J-K, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wünsche A, Satagopam V, Schmitz MHA, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters J-M, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289):721–727. doi:10.1038/nature08869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gunkel M, Flottmann B, Heilemann M, Reymann J, Erfle H (2014) Integrated and correlative high-throughput and super-resolution microscopy. Histochem Cell Biol 141(6):597–603. doi:10.1007/s00418-014-1209-y

    Article  CAS  PubMed  Google Scholar 

  4. Flottmann B, Gunkel M, Lisauskas T, Heilemann M, Starkuviene V, Reymann J, Erfle H (2013) Correlative light microscopy for high-content screening. Biotechniques 55(5):243–252. doi:10.2144/000114099

    Article  CAS  PubMed  Google Scholar 

  5. Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter AE (2012) Biological imaging software tools. Nat Methods 9(7):697–710. doi:10.1038/nmeth.2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conrad C, Wünsche A, Tan TH, Bulkescher J, Sieckmann F, Verissimo F, Edelstein A, Walter T, Liebel U, Pepperkok R, Ellenberg J (2011) Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Methods 8(3):246–249. doi:10.1038/nmeth.1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tischer C, Hilsenstein V, Hanson K, Pepperkok R (2014) Adaptive fluorescence microscopy by online feedback image analysis. Methods Cell Biol 123:489–503. doi:10.1016/B978-0-12-420138-5.00026-4

    Article  PubMed  Google Scholar 

  8. Osterwald S, Wörz S, Reymann J, Sieckmann F, Rohr K, Erfle H, Rippe K (2011) A three-dimensional colocalization RNA interference screening platform to elucidate the alternative lengthening of telomeres pathway. Biotechnol J. doi:10.1002/biot.201000474

    PubMed  Google Scholar 

  9. Gunkel M, Beil N, Beneke J, Reymann J, Erfle H (2015) Fluorescence microscopy-based RNA interference screening. Methods Mol Biol 1251:59–66. doi:10.1007/978-1-4939-2080-8_4

    Article  CAS  PubMed  Google Scholar 

  10. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R (2007) Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2(2):392–399. doi:10.1038/nprot.2006.483

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Michael Berthold and the KNIME/KNIP developers for their help with the development of the KNIME nodes and workflows. This work was funded within the project CancerTelSys (grant number 01ZX1302) in the e:Med program, the project HD-HuB (grant number 031A537C) in the de.NBI program and within the project RNA-Code (grant number 031A298) in the e:Bio program, all of the German Federal Ministry of Education and Research (BMBF). The ViroQuant-CellNetworks RNAi Screening Facility was also supported by the CellNetworks-Cluster of Excellence (grant number EXC81).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gunkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gunkel, M., Eberle, J.P., Erfle, H. (2017). Fluorescence-Based High-Throughput and Targeted Image Acquisition and Analysis for Phenotypic Screening. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics