Skip to main content

Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  2. Howard CV, Reed MG (1988) Unbiased stereology: three-dimensional measurement in microscopy. BIOS Scientific Publishers, Oxford

    Google Scholar 

  3. Pirard E, Dislaire G (2005) Robustness of planar shape descriptors of particles. Proc. Int. Assoc. Math. Geol. Conf. Toronto, CA

    Google Scholar 

  4. Lehmann G, Legland D (2012) Efficient N-dimensional surface estimation using Crofton formula and run-length encoding. Insight J. http://hdl.handle.net/10380/3342

  5. Dorst L, Smeulders AWM (1987) Length estimators for digitized contours. Comput Vis Graph Image Process 40:311–333. doi: http://dx.doi.org/10.1016/S0734-189X(87)80145-7

  6. Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: mathematical morphology library for ImageJ. Release 1(2):2. doi:10.5281/zenodo.51734

    Google Scholar 

  7. Pincus Z, Theriot JA (2007) Comparison of quantitative methods for cell-shape analysis. J Microsc 227:140–156. doi:10.1111/j.1365-2818.2007.01799.x

    Article  CAS  PubMed  Google Scholar 

  8. Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148. doi:10.1083/jcb.200903097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ronneberger O, Baddeley D, Scheipl F et al (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosom Res 16:523–562

    Article  CAS  Google Scholar 

  10. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  11. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Physiol 300:C723–C742

    Article  CAS  Google Scholar 

  12. Diggle PJ (2014) Statistical analysis of spatial and spatio-temporal point patterns, 3rd edn. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  13. Andrey P, Kiêu K, Kress C et al (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6:e1000853

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meijering E, Smal I, Danuser G (2006) Tracking in molecular bioimaging. IEEE Signal Process Mag 23:46–53. doi:10.1109/MSP.2006.1628877

    Article  Google Scholar 

  15. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  16. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285

    Article  Google Scholar 

  17. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recognit 19:41–47

    Article  Google Scholar 

  18. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulation. IEEE Trans Pattern Anal Mach Intell 13:583–598

    Article  Google Scholar 

  19. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  20. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    Google Scholar 

  21. Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) ilastik: interactive learning and segmentation toolkit. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp 230–233

    Google Scholar 

  22. Arganda-Carreras I, Cardona A, Kaynig V, Schindelin J (2011) Trainable weka segmentation. Fiji website

    Google Scholar 

  23. Serra J (1982) Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  24. Soille P (2003) Morphological image analysis: principles and applications, 2nd edn. Springer-Verlag, Berlin, Germany

    Google Scholar 

  25. Lee J-S (1983) Digital image smoothing and the sigma filter. Comput Vis Graph Image Process 24:255–269. doi: http://dx.doi.org/10.1016/0734-189X(83)90047-6

  26. Perona P, Malik J (1990) Scale-space filtering and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  27. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth Int. Conf. Comput. Vis. pp 839–846

    Google Scholar 

  28. Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing. Int J Comput Vis 23:45–78

    Article  Google Scholar 

  29. Buades A, Coll B, Morel J-M (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4:490–530

    Article  Google Scholar 

  30. Kervrann C, Boulanger J (2006) Optimal spatial adaptation for patch-based image denoising. IEEE Trans Image Process 15:2866–2878

    Article  PubMed  Google Scholar 

  31. Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31:1076–1097

    CAS  PubMed  Google Scholar 

  32. Cannell MB, McMorland A, Soeller C (2006) Image enhancement by deconvolution. In: Pawley BJ (ed) Handb. Biol. Confocal Microsc. Springer, Boston, MA, pp 488–500

    Chapter  Google Scholar 

  33. Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2:176–201

    Article  CAS  PubMed  Google Scholar 

  34. Breen EJ, Jones R (1996) Attribute openings, thinnings, and granulometries. Comput Vis Image Underst 64:377–389. doi: http://dx.doi.org/10.1006/cviu.1996.0066

  35. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50

    Article  Google Scholar 

  36. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  37. Lehmussola A, Ruusuvuori P, Selinummi J et al (2007) Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans Med Imaging 26:1010–1016. doi:10.1109/TMI.2007.896925

    Article  PubMed  Google Scholar 

  38. Svoboda D, Kozubek M, Stejskal S (2009) Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytom A 75:494–509. doi:10.1002/cyto.a.20714

    Article  Google Scholar 

  39. Murphy RF (2016) Building cell models and simulations from microscope images. Methods 96:33–39. doi:10.1016/j.ymeth.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  40. Eils R, Dietzel S, Bertin E et al (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135:1427–1440

    Article  CAS  PubMed  Google Scholar 

  41. Pawley JB (2006) Points, pixels, and gray levels: digitizing image data. In: Pawley BJ (ed) Handb. Biol. Confocal Microsc. Springer, Boston, MA, pp 59–79

    Chapter  Google Scholar 

  42. Sheppard CJR, Gan X, Gu M, Roy M (2006) Signal-to-noise ratio in confocal microscopes. In: Pawley BJ (ed) Handb. Biol. Confocal Microsc. Springer, Boston, MA, pp 442–452

    Chapter  Google Scholar 

  43. Žunić J, Hirota K, Rosin PL (2010) A Hu moment invariant as a shape circularity measure. Pattern Recognit 43:47–57. doi: http://dx.doi.org/10.1016/j.patcog.2009.06.017

  44. Xue J-H, Zhang Y-J (2012) Ridler and Calvard’s, Kittler and Illingworth’s and Otsu’s methods for image thresholding. Pattern Recognit Lett 33:793–797. doi:10.1016/j.patrec.2012.01.002

    Article  Google Scholar 

  45. Bassel GW, Stamm P, Mosca G et al (2014) Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci U S A 111:8685–8690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maška M, Ulman V, Svoboda D et al (2014) A benchmark for comparison of cell tracking algorithms. Bioinformatics 30:1609–1617. doi:10.1093/bioinformatics/btu080

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Andrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Arganda-Carreras, I., Andrey, P. (2017). Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics