Advertisement

Optical Coherence Microscopy

  • Rainer A. LeitgebEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1563)

Abstract

The present chapter aims at demonstrating the capabilities of optical coherence microscopy (OCM) for applications in biomedical imaging. We furthermore review the functional imaging capabilities of OCM focusing on lable-free optical angiography. We conclude with a section on digital wavefront control and a short outlook on future developments, in particular for contrast enhancement techniques.

Key words

Optical coherence tomography Optical coherence microscopy OCT angiography Functional imaging Bessel beam Digital aberration correction Digital wavefront sensing Beam engineering 

Notes

Acknowledgments

Acknowledged are the contributions of Abhishek Kumar, Laurin Ginner, Daniel Fechtig, Cedric Blatter, Branislav Grajciar, and Wolfgang Drexler, from the Medical University Vienna (Austria), Theo Lasser, Martin Villiger, Adrian Bachmann from the Ecole Polytechnique Fédérale de Lausanne (Switzerland), Robert Huber from the Ludwig Maximillian University in Munich (Germany) as well as the following financial support: European Commission FP7-HEALTH (grant 201880, FUN OCT), Austrian Christian Doppler Association, and Swiss National Fonds (SNF grant 205321-10974).

References

  1. 1.
    Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66(2):239–303CrossRefGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1(9):970–972CrossRefPubMedGoogle Scholar
  4. 4.
    Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24(17):1221–1223CrossRefPubMedGoogle Scholar
  5. 5.
    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher AF, Drexler W, Apolonski A, Wadsworth WJ, Knight JC, Russell PSJ, Vetterlein M, Scherzer E (2002) Submicrometer axial resolution optical coherence tomography. Opt Lett 27(20):1800–1802CrossRefPubMedGoogle Scholar
  6. 6.
    Kray S, Spöler F, Fürst M, Kurz H (2009) High-resolution simultaneous dual-band spectral domain optical coherence tomography. Opt Lett 34(13):1970–1972CrossRefPubMedGoogle Scholar
  7. 7.
    Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-field optical coherence tomography. Opt Lett 27(7):530–532CrossRefPubMedGoogle Scholar
  8. 8.
    Schmitt JM, Lee SL, Yung KM (1997) An optical coherence microscope with enhanced resolving power in thick tissue. Opt Commun 142(4–6):203–207CrossRefGoogle Scholar
  9. 9.
    Podoleanu AG, Dobre GM, Jackson DA (1998) En-face coherence imaging using galvanometer scanner modulation. Opt Lett 23(3):147–149CrossRefPubMedGoogle Scholar
  10. 10.
    Hitzenberger C, Trost P, Lo P-W, Zhou Q (2003) Three-dimensional imaging of the human retina by high-speed optical coherence tomography. Opt Express 11(21):2753–2761CrossRefPubMedGoogle Scholar
  11. 11.
    Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG (1994) Optical coherence microscopy in scattering media. Opt Lett 19(8):590–592CrossRefPubMedGoogle Scholar
  12. 12.
    Pircher M, Baumann B, Götzinger E, Sattmann H, Hitzenberger CK (2009) Phase contrast coherence microscopy based on transverse scanning. Opt Lett 34(12):1750–1752CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huber R, Wojtkowski M, Fujimoto JG, Jiang JY, Cable AE (2005) Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt Express 13(26):10523–10538CrossRefPubMedGoogle Scholar
  14. 14.
    Herman RM, Wiggins TA (1991) Production and uses of diffractionless beams. J Opt Soc Am A Opt Image Sci Vis 8(6):932–942CrossRefGoogle Scholar
  15. 15.
    Ding ZH, Ren HW, Zhao YH, Nelson JS, Chen ZP (2002) High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt Lett 27(4):243–245CrossRefPubMedGoogle Scholar
  16. 16.
    Lee KS, Rolland LP (2008) Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt Lett 33(15):1696–1698CrossRefPubMedGoogle Scholar
  17. 17.
    Tan KM, Mazilu M, Chow TH, Lee WM, Taguchi K, Ng BK, Sibbett W, Herrington CS, Brown CTA, Dholakia K (2009) In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt Express 17(4):2375–2384CrossRefPubMedGoogle Scholar
  18. 18.
    Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, Tearney GJ (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 17(8):1010–1014. doi: 10.1038/nm.2409 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lorenser D, Yang X, Sampson DD (2012) Ultrathin fiber probes with extended depth of focus for optical coherence tomography. Opt Lett 37(10):1616–1618CrossRefPubMedGoogle Scholar
  20. 20.
    Leitgeb RA, Villiger M, Bachmann AH, Steinmann L, Lasser T (2006) Extended focus depth for Fourier domain optical coherence microscopy. Opt Lett 31(16):2450–2452CrossRefPubMedGoogle Scholar
  21. 21.
    de Boer JF, Milner TE (2002) Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt. 7(3):359–371. doi: 10.1117/1.1483879 CrossRefPubMedGoogle Scholar
  22. 22.
    Pircher M, Hitzenberger CK, Schmidt-Erfurth U (2011) Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 30(6):431–451. doi: 10.1016/j.preteyeres.2011.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    LeitgebRA, WerkmeisterRM, BlatterC, SchmettererL (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41(0):26–43. doi:http://dx.doi.org/10.1016/j.preteyeres.2014.03.004
  24. 24.
    Kennedy BF, McLaughlin RA, Kennedy KM, Chin L, Curatolo A, Tien A, Latham B, Saunders CM, Sampson DD (2014) Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed Opt Express 5(7):2113–2124. doi: 10.1364/BOE.5.002113 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leitgeb RA (2011) Current technologies for high-speed and functional imaging with optical coherence tomography. In: Hawkes PW (ed) Advances in imaging and electron physics, Advances in imaging and electron physics, vol 168. Elsevier Academic Press Inc, San Diego, pp 109–192. doi: 10.1016/b978-0-12-385983-9.00003-x Google Scholar
  26. 26.
    Ralston TS, Marks DL, Carney PS, Boppart SA (2006) Inverse scattering for optical coherence tomography. J Opt Soc Am A 23(5):1027–1037CrossRefGoogle Scholar
  27. 27.
    Ralston TS, Marks DL, Carney PS, Boppart SA (2008) Real-time interferometric synthetic aperture microscopy. Opt Express 16(4):2555–2569CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yasuno Y, Sando Y, Sugisaka JI, Endo T, Makita S, Aoki G, Itoh M, Yatagai T (2005) In-focus Fourier-domain optical coherence tomography by complex numerical method. Opt Quantum Electron 37(13–15):1185–1189CrossRefGoogle Scholar
  29. 29.
    Villiger M, Lasser T (2010) Image formation and tomogram reconstruction in optical coherence microscopy. J Opt Soc Am A 27(10):2216–2228CrossRefGoogle Scholar
  30. 30.
    WojtkowskiM, LeitgebR, KowalczykA, FercherA (2002) Fourier domain OCT imaging of human eye in vivo. In:Coherence domain optical methods in biomedical science and clinical applications vi, vol 3. Proceedings of the society of photo-optical instrumentation engineers (SPIE), pp 230–236Google Scholar
  31. 31.
    Villiger M, Goulley J, Friedrich M, Grapin-Botton A, Meda P, Lasser T, Leitgeb RA (2009) In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy. Diabetologia 52(8):1599–1607CrossRefPubMedGoogle Scholar
  32. 32.
    Blatter C, Grajciar B, Eigenwillig CM, Wieser W, Biedermann BR, Huber R, Leitgeb RA (2011) Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt Express 19:12141–12155.Google Scholar
  33. 33.
    Berclaz C, Goulley J, Villiger M, Pache C, Bouwens A, Martin-Williams E, Van de Ville D, Davison AC, Grapin-Botton A, Lasser T (2012) Diabetes imaging-quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy. Biomed Opt Express 3(6):1365–1380CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bolmont T, Bouwens A, Pache C, Dimitrov M, Berclaz C, Villiger M, Wegenast-Braun BM, Lasser T, Fraering PC (2012) Label-free imaging of cerebral beta-amyloidosis with extended-focus optical coherence microscopy. J Neurosci 32(42):14548–14556. doi: 10.1523/Jneurosci.0925-12.2012 CrossRefPubMedGoogle Scholar
  35. 35.
    Radde R, Bolmont T, Sa K, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Hölscher C, Mathews PM, Jucker M (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14:7821–7840CrossRefPubMedGoogle Scholar
  37. 37.
    Spaide RF, Fujimoto JG, Waheed NK (2015) Optical coherence tomography angiography. Retina 35(11):2161–2162. doi: 10.1097/iae.0000000000000881 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, Jiang J, Cable A, Wilson BC, Vitkin IA, Yang VXD (2008) Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 33(13):1530–1532CrossRefPubMedGoogle Scholar
  39. 39.
    Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, Zawadzki RJ (2011) In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express 2(6):1504–1513CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    An L, Qin J, Wang RK (2010) Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express 18(8):8220–8228CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    SchmollT, IvascuIR, SinghASG, BlatterC, LeitgebRA (2015) Intra-and inter-frame differential doppler optical coherence tomography. Sovremennye Tehnologii v Medicine 7 (1):34–42. doi:10.17691/stm2015.7.1.05Google Scholar
  42. 42.
    Blatter C, Weingast J, Alex A, Grajciar B, Wieser W, Drexler W, Huber R, Leitgeb RA (2012) In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomed Opt Express 3(10):2636–2646CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Berclaz C, Schmidt-Christensen A, Szlag D, Extermann J, Hansen L, Bouwens A, Villiger M, Goulley J, Schuit F, Grapin-Botton A, Lasser T, Holmberg D (2016) Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging. Diabetologia 59(3):550–559. doi: 10.1007/s00125-015-3819-x CrossRefPubMedGoogle Scholar
  44. 44.
    Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–U1151. doi: 10.1038/nm.1971 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bouwens A, Bolmont T, Szlag D, Berclaz C, Lasser T (2014) Quantitative cerebral blood flow imaging with extended-focus optical coherence microscopy. Opt Lett 39(1):37–40. doi: 10.1364/OL.39.000037 CrossRefPubMedGoogle Scholar
  46. 46.
    Srinivasan VJ, Sakadi S, Gorczynska I, Ruvinskaya S, Wu W, Fujimoto JG, Boas DA (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18(3):2477–2494CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA (2005) Spectral-domain phase microscopy. Opt Lett 30(10):1162–1164CrossRefPubMedGoogle Scholar
  48. 48.
    Hillmann D, Lührs C, Bonin T, Koch P, Hüttmann G (2011) Holoscopy—holographic optical coherence tomography. Opt Lett 36(13):2390–2392. doi: 10.1364/OL.36.002390 CrossRefPubMedGoogle Scholar
  49. 49.
    Povazay B, Unterhuber A, Hermann B, Sattmann H, Arthaber H, Drexler W (2006) Full-field time-encoded frequency-domain optical coherence tomography. Opt Express 14(17):7661–7669. doi: 10.1364/OE.14.007661 CrossRefPubMedGoogle Scholar
  50. 50.
    Kumar A, Drexler W, Leitgeb RA (2013) Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Opt Express 21(9):10850–10866. doi: 10.1364/OE.21.010850 CrossRefPubMedGoogle Scholar
  51. 51.
    Kumar A, Kamali T, Platzer R, Unterhuber A, Drexler W, Leitgeb RA (2015) Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT. Biomed Opt Express 6(4):1124–1134. doi: 10.1364/BOE.6.001124 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19(7):071412–071412. doi: 10.1117/1.JBO.19.7.071412 CrossRefPubMedGoogle Scholar
  53. 53.
    Wang LV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photon 3(9):503–509CrossRefGoogle Scholar
  54. 54.
    Blatter C, Grajciar B, Zou P, Wieser W, Verhoef AJ, Huber R, Leitgeb RA (2012) Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging. Opt Lett 37(21):4368–4370CrossRefPubMedGoogle Scholar
  55. 55.
    Liu M, Chen Z, Zabihian B, Sinz C, Zhang E, Beard PC, Ginner L, Hoover E, Minneman MP, Leitgeb RA, Kittler H, Drexler W (2016) Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. Biomed Opt Express 7:3390–3402Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Christian Doppler Laboratory OPTRAMED, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria

Personalised recommendations