Two-Color Total Internal Reflection Fluorescence Microscopy of Exocytosis in Endocrine Cells

  • Adam J. Trexler
  • Justin W. TaraskaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1563)


We describe a comprehensive method for imaging and analysis of local protein dynamics at single sites of exocytosis in living cultured endocrine cells. This method is well suited to quantitatively map the complex dynamics of individual molecules at single sites of vesicle fusion in live cells.

Key words

TIRF Exocytosis Live-cell imaging Vesicle fusion Image analysis Endocrine cells 


  1. 1.
    Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112(4):519–533CrossRefPubMedGoogle Scholar
  2. 2.
    Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3):675–690. doi: 10.1016/j.neuron.2013.10.022 CrossRefPubMedGoogle Scholar
  3. 3.
    Zenisek D, Steyer JA, Almers W (2000) Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406(6798):849–854. doi: 10.1038/35022500 CrossRefPubMedGoogle Scholar
  4. 4.
    Steyer JA, Almers W (1999) Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy. Biophys J 76(4):2262–2271. doi: 10.1016/S0006-3495(99)77382-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100(4):2070–2075. doi: 10.1073/pnas.0337526100 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    TsuboiT, RutterGA (2003) Insulin secretion by ‘kiss-and-run’ exocytosis in clonal pancreatic islet beta-cells. Biochem Soc Trans31(Pt 4):833–836. doi:10.1042/Google Scholar
  7. 7.
    Gandasi NR, Barg S (2014) Contact-induced clustering of syntaxin and munc18 docks secretory granules at the exocytosis site. Nat Commun 5:3914. doi: 10.1038/ncomms4914 CrossRefPubMedGoogle Scholar
  8. 8.
    Tomes CN, Michaut M, De Blas G, Visconti P, Matti U, Mayorga LS (2002) SNARE complex assembly is required for human sperm acrosome reaction. Dev Biol 243(2):326–338. doi: 10.1006/dbio.2002.0567 CrossRefPubMedGoogle Scholar
  9. 9.
    Ramalho-Santos J, Schatten G, Moreno RD (2002) Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol Reprod 67(4):1043–1051CrossRefPubMedGoogle Scholar
  10. 10.
    Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57(2):315–344CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207. doi: 10.1038/nature11320 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brose N, Hofmann K, Hata Y, Sudhof TC (1995) Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem 270(42):25273–25280CrossRefPubMedGoogle Scholar
  13. 13.
    Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, Yokoyama S, Nishioka H, Matsuura Y, Mizoguchi A, Scheller RH, Takai Y (1998) Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20(5):905–915CrossRefPubMedGoogle Scholar
  14. 14.
    Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366(6453):347–351. doi: 10.1038/366347a0 CrossRefPubMedGoogle Scholar
  15. 15.
    Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R (2003) The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem 278(33):31159–31166. doi: 10.1074/jbc.M305500200 CrossRefPubMedGoogle Scholar
  16. 16.
    Loyet KM, Kowalchyk JA, Chaudhary A, Chen J, Prestwich GD, Martin TF (1998) Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J Biol Chem 273(14):8337–8343CrossRefPubMedGoogle Scholar
  17. 17.
    Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Sudhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31(4):581–591CrossRefPubMedGoogle Scholar
  18. 18.
    Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641. doi: 10.1146/annurev.biochem.77.062005.101135 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang CT, Grishanin R, Earles CA, Chang PY, Martin TF, Chapman ER, Jackson MB (2001) Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294(5544):1111–1115. doi: 10.1126/science.1064002 CrossRefPubMedGoogle Scholar
  20. 20.
    Fukuda M (2008) Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci 65(18):2801–2813. doi: 10.1007/s00018-008-8351-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Geppert M, Goda Y, Stevens CF, Sudhof TC (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387(6635):810–814. doi: 10.1038/42954 CrossRefPubMedGoogle Scholar
  22. 22.
    Wada K, Mizoguchi A, Kaibuchi K, Shirataki H, Ide C, Takai Y (1994) Localization of rabphilin-3A, a putative target protein for Rab3A, at the sites of Ca(2+)-dependent exocytosis in PC12 cells. Biochem Biophys Res Commun 198(1):158–165. doi: 10.1006/bbrc.1994.1023 CrossRefPubMedGoogle Scholar
  23. 23.
    Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145CrossRefPubMedGoogle Scholar
  24. 24.
    Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  25. 25.
    Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, Taraska JW (2012) Imaging the post-fusion release and capture of a vesicle membrane protein. Nat Commun 3:1154. doi: 10.1038/ncomms2158 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4(9):691–698. doi: 10.1038/ncb837 CrossRefPubMedGoogle Scholar
  27. 27.
    Taylor MJ, Perrais D, Merrifield CJ (2011) A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 9(3):e1000604. doi: 10.1371/journal.pbio.1000604 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kern W (1990) The evolution of silicon-wafer cleaning technology. J Electrochem Soc 137(6):1887–1892CrossRefGoogle Scholar
  29. 29.
    Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49(3):424–430CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Molecular BiophysicsNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Molecular BiophysicsNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations