STED Imaging in Drosophila Brain Slices

  • Sandra Fendl
  • Jesús Pujol-Martí
  • Joel Ryan
  • Alexander Borst
  • Robert KasperEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1563)


Super-resolution microscopy is a very powerful tool to investigate fine cellular structures and molecular arrangements in biological systems. For instance, stimulated emission depletion (STED) microscopy has been successfully used in recent years to investigate the arrangement and colocalization of different protein species in cells in culture and on the surface of specimens. However, because of its extreme sensitivity to light scattering, super-resolution imaging deep inside tissues remains a challenge. Here, we describe the preparation of thin slices from the fruit fly (Drosophila melanogaster) brain, subsequent immunolabeling and imaging with STED microscopy. This protocol allowed us to image small dendritic branches from neurons located deep in the fly brain with improved resolution compared with conventional light microscopy.

Key words

STED Drosophila melanogaster Immunofluorescence Cryostat sectioning Brain slice 



We are indebted to H. Leonhardt and the BioImaging Network Munich for generous support. We thank Marianne Braun and Ursula Weber for excellent help with technical procedures, and Aljoscha Nern, Gerald M. Rubin, and Barry Dickson for providing transgenic flies.


  1. 1.
    Abbe E (1973) Beiträge zur Theorie des Mikroskops und der mikroskopischenWahrnehmung. Archiv für mikroskopische Anatomie 9:413–418CrossRefGoogle Scholar
  2. 2.
    Klar TA, Jacobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645CrossRefPubMedGoogle Scholar
  4. 4.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lau L, Lee YL, Matis M, Axelrod J, Stearns T, Moerner WE (2011) STED super-resolution microscopy inDrosophilatissue and in mammalian cells. Proc SPIE Int Soc Opt Eng 7910:79101NPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335(6068):551CrossRefPubMedGoogle Scholar
  8. 8.
    Ke MT, Nakai Y, Fujimoto S, Takayama R, Yoshida S, Kitajima TS, Sato M, Imai T (2016) Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Reports 14(11):2718–2732CrossRefPubMedGoogle Scholar
  9. 9.
    Sigal YM, Speer CM, Babcock HP, Zhuang X (2015) Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163(2):493–505CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68:843–856CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Spühler IA, Conley GM, Scheffold F, Sprecher SG (2016) Super resolution imaging of genetically labelled synapses in Drosophila brain tissue. Front Cell Neurosci 10:142CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rodríguez AdV, Didiano D, Desplan, C (2011) Power tools for gene expression and clonal analysis in Drosophila. NatureMethods 9(1):47–55Google Scholar
  13. 13.
    Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72: 202–230Google Scholar
  14. 14.
    Nern A, Pfeiffer BD, Svoboda K, Rubin GM (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proceedings of the National Academy of Sciences of the United States of America 108(34):14198–14203Google Scholar
  15. 15.
    Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proceedings of the National Academy of Sciences of the United States of America 112(22):E2967–E2976Google Scholar
  16. 16.
    Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11:514–522Google Scholar
  17. 17.
    Kazama H (2015) Systems neuroscience in Drosophila: conceptual and technical advantages. Neuroscience 296:3–14Google Scholar
  18. 18.
    Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt M, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216Google Scholar
  19. 19.
    Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Duerrbeck H, Bucher S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Bucher E (2006) Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila. Neuron 49(6):833–844Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Sandra Fendl
    • 1
  • Jesús Pujol-Martí
    • 1
  • Joel Ryan
    • 2
  • Alexander Borst
    • 1
  • Robert Kasper
    • 1
    Email author
  1. 1.Max Planck Institute of NeurobiologyMartinsried, MunichGermany
  2. 2.LMU Munich, Biocenter MartinsriedMartinsried, MunichGermany

Personalised recommendations