Skip to main content

Methylated mRNA Nucleotides as Regulators for Ribosomal Translation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1562))

Abstract

Methylated RNA nucleotides were recently discovered to be highly abundant in RNAs. The effects of these methylations were mainly attributed to altered mRNA stabilities, protein-binding affinities, or RNA structures. The direct impact of RNA modifications on the performance of the ribosome has not been investigated so far. In this chapter, we describe an approach that allows introducing RNA modifications site-specifically into coding sequences of mRNAs and determining their effect on the translation machinery in a well-defined bacterial in vitro system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. El Yacoubi B, Bailly M, de Crecy-Lagard V (2012) Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 46:69–95

    Article  CAS  PubMed  Google Scholar 

  2. Nedialkova DD, Leidel SA (2015) Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161(7):1606–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilson DN, Nierhaus KH (2007) The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 42(3):187–219

    Article  CAS  PubMed  Google Scholar 

  4. Pan T (2013) N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 38(4):204–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Edelheit S, Schwartz S, Mumbach MR, Wurtzel O, Sorek R (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9(6):e1003602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40(11):5023–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9(10):e110799

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hoernes TP, Erlacher MD (2016) Translating the epitranscriptome. WIREs RNA 2016. doi:10.1002/wrna.1375

  10. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C (2016) Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 12(5):311–316

    Article  CAS  PubMed  Google Scholar 

  11. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530(7591):441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15(5):293–306

    Article  CAS  PubMed  Google Scholar 

  14. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng X, Chen K, Luo GZ, Weng X, Ji Q, Zhou T, He C (2015) Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res 43:6557–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaille J, Huttenhofer A (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169(5):745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16(2):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518(7540):560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kariko K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20(5):948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39(21):e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16(11):1833–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heilman KL, Leach RA, Tuck MT (1996) Internal 6-methyladenine residues increase the in vitro translation efficiency of dihydrofolate reductase messenger RNA. Int J Biochem Cell Biol 28(7):823–829

    Article  CAS  PubMed  Google Scholar 

  24. Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS (2014) An active role for the ribosome in determining the fate of oxidized mRNA. Cell Rep 9(4):1256–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hudson BH, Zaher HS (2015) O6-Methylguanosine leads to position-dependent effects on ribosome speed and fidelity. RNA 21(9):1648–1659

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, Hüttenhofer H, Erlacher MD (2016) Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res 44(2):852–862

    Article  CAS  PubMed  Google Scholar 

  27. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22 doi:nprot.2006.4

    Article  PubMed  Google Scholar 

  28. Vazquez-Laslop N, Thum C, Mankin AS (2008) Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30(2):190–202

    Article  CAS  PubMed  Google Scholar 

  29. Lang K, Micura R (2008) The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat Protoc 3(9):1457–1466

    Article  CAS  PubMed  Google Scholar 

  30. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755

    Article  CAS  PubMed  Google Scholar 

  31. Erlacher MD, Chirkova A, Voegele P, Polacek N (2011) Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis. Nat Protoc 6(5):580–592

    Article  CAS  PubMed  Google Scholar 

  32. Schmid K, Thuring K, Keller P, Ochel A, Kellner S, Helm M (2015) Variable presence of 5-methylcytosine in commercial RNA and DNA. RNA Biol 12(10):1152–1158

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bommer U, Burkhardt N, Jünemann R, Spahn CM, Triana-Alonso FJ, Nierhaus KH (1997) Ribosomes and polysomes. Subcellular fractionation—a practical approach. IRL Press, Washington, DC, pp 271–301

    Google Scholar 

Download references

Acknowledgment

This work was supported by the FWF (P 22658-B12 and P 28494-BBL to M.E.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias D. Erlacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hoernes, T.P., Erlacher, M.D. (2017). Methylated mRNA Nucleotides as Regulators for Ribosomal Translation. In: Lusser, A. (eds) RNA Methylation. Methods in Molecular Biology, vol 1562. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6807-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6807-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6805-3

  • Online ISBN: 978-1-4939-6807-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics