Skip to main content

Transcriptome-Wide Mapping of N 1-Methyladenosine Methylome

  • Protocol
  • First Online:
RNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1562))

Abstract

N 1-Methyladenosine (m1A) is a prevalent posttranscriptional RNA modification and commonly found in tRNA and rRNA. Very recent works have also demonstrated the prevalence of m1A in mammalian mRNA. Hence, high-throughput methods that allow transcriptome-wide mapping of m1A will be important for further functional investigations. Here, we describe a technique called “m1A-ID-Seq”, which is based on m1A immunoprecipitation and the inherent ability of m1A to stall reverse transcription, to map m1A in the transcriptome. Utilizing this technique, highly confident m1A peaks can be obtained on a transcriptome-wide level.

* These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res 41(Database issue):D262–D267

    Article  CAS  PubMed  Google Scholar 

  2. Liu N, Pan T (2015) RNA epigenetics. Trans Res 165(1):28–35

    Article  CAS  Google Scholar 

  3. Roundtree IA, He C (2016) RNA epigenetics--chemical messages for posttranscriptional gene regulation. Curr Opin Chem Biol 30:46–51

    Article  CAS  PubMed  Google Scholar 

  4. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, Zheng G, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D, Dore LC, Amariglio N, Rechavi G, He C (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530(7591):441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C (2016) Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 12(5):311–316

    Article  CAS  PubMed  Google Scholar 

  6. Schevitz RW, Podjarny AD, Krishnamachari N, Hughes JJ, Sigler PB, Sussman JL (1979) Crystal structure of a eukaryotic initiator tRNA. Nature 278(5700):188–190

    Article  CAS  PubMed  Google Scholar 

  7. Peifer C, Sharma S, Watzinger P, Lamberth S, Kotter P, Entian KD (2013) Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res 41(2):1151–1163

    Article  CAS  PubMed  Google Scholar 

  8. Motorin Y, Muller S, Behm-Ansmant I, Branlant C (2007) Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 425:21–53

    Article  CAS  PubMed  Google Scholar 

  9. Behm-Ansmant I, Helm M, Motorin Y (2011) Use of specific chemical reagents for detection of modified nucleotides in RNA. J Nucleic Acids 2011:408053

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hodgkinson A, Idaghdour Y, Gbeha E, Grenier JC, Hip-Ki E, Bruat V, Goulet JP, de Malliard T, Awadalla P (2014) High-resolution genomic analysis of human mitochondrial RNA sequence variation. Science 344(6182):413–415

    Article  CAS  PubMed  Google Scholar 

  11. Hauenschild R, Tserovski L, Schmid K, Thuring K, Winz ML, Sharma S, Entian KD, Wacheul L, Lafontaine DL, Anderson J, Alfonzo J, Hildebrandt A, Jaschke A, Motorin Y, Helm M (2015) The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res 43(20):9950–9964

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419(6903):178–182

    Article  CAS  PubMed  Google Scholar 

  13. Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419(6903):174–178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqi Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Li, X., Peng, J., Yi, C. (2017). Transcriptome-Wide Mapping of N 1-Methyladenosine Methylome. In: Lusser, A. (eds) RNA Methylation. Methods in Molecular Biology, vol 1562. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6807-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6807-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6805-3

  • Online ISBN: 978-1-4939-6807-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics