Skip to main content

Analysis of High-Throughput RNA Bisulfite Sequencing Data

  • Protocol
  • First Online:
Book cover RNA Methylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1562))

Abstract

Methylation of the 5-cytosine (m5C) is a common but not well-understood RNA modification, which can be detected by sequencing of bisulfite-treated transcripts (RNA-BSseq). In this Chapter, we discuss computational RNA-BSseq data analysis methods for transcriptome-wide identification and quantification of m5C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer M (2015) Chapter fourteen – RNA 5-methylcytosine analysis by bisulfite sequencing. Methods Enzymol 560:297–329. doi: 10.1016/bs.mie.2015.03.007, ISSN 0076-6879, ISBN 9780128021927. http://www.sciencedirect.com/science/article/pii/S0076687915002335

  2. Cantara WA, Crain PF, Rozenski J et al (2011) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39:D195–D201. doi:10.1093/nar/gkq1028

    Article  CAS  PubMed  Google Scholar 

  3. Motorin Y, Lyko F, Helm M (2010) 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38:1415–1430. doi:10.1093/nar/gkp1117

    Article  CAS  PubMed  Google Scholar 

  4. Amort T, Soulière MF, Wille A et al (2013) Long non-coding RNAs as targets for cytosine methylation. RNA Biol 10:1003–1008. doi:10.4161/rna.24454

    Article  PubMed  Google Scholar 

  5. Schaefer M (2015) Chapter fourteen – RNA 5-methylcytosine analysis by bisulfite sequencing. Methods Enzymol 560:297–329. doi: 10.1016/bs.mie.2015.03.007, ISSN 0076–6879, ISBN 9780128021927. http://www.sciencedirect.com/science/article/pii/S0076687915002335

  6. Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033. doi:10.1093/nar/gks144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464. doi:10.1038/nbt.2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hussain S, Sajini AA, Blanco S et al (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261. doi:10.1016/j.celrep.2013.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khoddami V, Cairns BR (2014) Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP. Nat Protoc 9:337–361. doi:10.1038/nprot.2014.014

    Article  CAS  PubMed  Google Scholar 

  10. Schaefer M, Pollex T, Hanna K, Lyko F (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12. doi:10.1093/nar/gkn954

    Article  PubMed  Google Scholar 

  11. Lee J-H, Ang JK, Xiao X (2013) Analysis and design of RNA sequencing experiments for identifying RNA editing and other single-nucleotide variants. RNA 19:725–732. doi:10.1261/rna.037903.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sims D, Sudbery I, Ilott NE et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132. doi:10.1038/nrg3642

    Article  CAS  PubMed  Google Scholar 

  13. Storvall H, Ramsköld D, Sandberg R (2013) Efficient and comprehensive representation of uniqueness for next-generation sequencing by minimum unique length analyses. PLoS One 8:e53822. doi:10.1371/journal.pone.0053822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  15. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dodt M, Roehr JT, Ahmed R, Dieterich C (2012) FLEXBAR-flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895–905. doi:10.3390/biology1030895

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordon A (2009) FASTX-Toolkit FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit/index.html.

  18. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. doi:10.14806/ej.17.1.200

    Article  Google Scholar 

  19. Fabbro CD, Scalabrin S, Morgante M, Giorgi FM (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One 8:e85024. doi:10.1371/journal.pone.0085024

    Article  PubMed  PubMed Central  Google Scholar 

  20. sestaton/Pairfq. In: GitHub. https://github.com/sestaton/Pairfq. Accessed 22 Feb 2016

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bao S, Jiang R, Kwan W et al (2011) Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 56:406–414. doi:10.1038/jhg.2011.43

    Article  CAS  PubMed  Google Scholar 

  24. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi:10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  25. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. doi:10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kunde-Ramamoorthy G, Coarfa C, Laritsky E et al (2014) Comparison and quantitative verification of mapping algorithms for whole-genome bisulfite sequencing. Nucleic Acids Res 42:e43. doi:10.1093/nar/gkt1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572. doi:10.1093/bioinformatics/btr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim J-Q, Tennakoon C, Li G et al (2012) BatMeth: improved mapper for bisulfite sequencing reads on DNA methylation. Genome Biol 13:R82. doi:10.1186/gb-2012-13-10-r82

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232. doi:10.1186/1471-2105-10-232

    Article  PubMed  PubMed Central  Google Scholar 

  31. Finotello F, Di Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 14:130–142. doi:10.1093/bfgp/elu035

    Article  PubMed  Google Scholar 

  32. Rieder D, Amort T, Kugler E et al (2015) meRanTK: methylated RNA analysis ToolKit. Bioinformatics. doi:10.1093/bioinformatics/btv647

  33. Tuorto F, Liebers R, Musch T et al (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905. doi:10.1038/nsmb.2357

    Article  CAS  PubMed  Google Scholar 

  34. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322. doi:10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barturen G, Rueda A, Oliver JL, Hackenberg M (2013) MethylExtract: high-quality methylation maps and SNV calling from whole genome bisulfite sequencing data. F1000Res 2:217. doi:10.12688/f1000research.2-217.v2

    PubMed  Google Scholar 

  36. Koboldt DC, Zhang Q, Larson DE et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. doi:10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karolchik D, Kuhn RM, Baertsch R et al (2008) The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36:D773–D779. doi:10.1093/nar/gkm966

    Article  CAS  PubMed  Google Scholar 

  38. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi:10.1093/bib/bbs017

    Article  PubMed  Google Scholar 

  39. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. doi:10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Rieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rieder, D., Finotello, F. (2017). Analysis of High-Throughput RNA Bisulfite Sequencing Data. In: Lusser, A. (eds) RNA Methylation. Methods in Molecular Biology, vol 1562. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6807-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6807-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6805-3

  • Online ISBN: 978-1-4939-6807-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics