Skip to main content

Peptide Suboptimal Conformation Sampling for the Prediction of Protein-Peptide Interactions

  • Protocol
  • First Online:
Modeling Peptide-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

The blind identification of candidate patches of interaction on the protein surface is a difficult task that can hardly be accomplished without a heuristic or the use of simplified representations to speed up the search. The PEP-SiteFinder protocol performs a systematic blind search on the protein surface using a rigid docking procedure applied to a limited set of peptide suboptimal conformations expected to approximate satisfactorily the conformation of the peptide in interaction. All steps rely on a coarse-grained representation of the protein and the peptide. While simple, such a protocol can help to infer useful information, assuming a critical analysis of the results. Moreover, such a protocol can be extended to a semi-flexible protocol where the suboptimal conformations are directly folded in the vicinity of the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vlieghe P, Lisowski V, Martinez J et al (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1-2):40–56

    Article  CAS  PubMed  Google Scholar 

  2. Zambrowicz A, Timmer M, Polanowski A et al (2013) Manufacturing of peptides exhibiting biological activity. Amino Acids 44(2):315–320

    Article  CAS  PubMed  Google Scholar 

  3. Kaspar AA, Reichert JM (2013) Future directions for peptide therapeutics development. Drug Discov Today 18(17-18):807–817

    Article  CAS  PubMed  Google Scholar 

  4. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  PubMed  Google Scholar 

  5. Vetter I, Davis JL, Rash LD et al (2011) Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 40(1):15–28

    Article  CAS  PubMed  Google Scholar 

  6. Caboche S, Pupin M, Leclère V et al (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36(Database issue):D326–D331

    CAS  PubMed  Google Scholar 

  7. Dietrich U, Dürr R, Koch J (2013) Peptides as drugs: from screening to application. Curr Pharm Biotechnol 14(5):501–512

    Article  CAS  PubMed  Google Scholar 

  8. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  9. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18(2):188–199

    Article  CAS  PubMed  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma B, Kumar S, Tsai CJ et al (1999) Folding funnels and binding mechanisms. Protein Eng 12(9):713–720

    Article  CAS  PubMed  Google Scholar 

  12. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Changeux JP, Edelstein S (2011) Conformational selection or induced fit 50 years of debate resolved. F1000 Biol Rep 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447(7147):1021–1025

    Article  CAS  PubMed  Google Scholar 

  15. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35(10):539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachmann A, Wildemann D, Praetorius F et al (2011) Mapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction. Proc Natl Acad Sci U S A 108(10):3952–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maupetit J, Derreumaux P, Tufféry P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31(4):726–738

    CAS  PubMed  Google Scholar 

  18. Shen Y, Maupetit J, Derreumaux P et al (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10(10):4745–4758

    Article  CAS  PubMed  Google Scholar 

  19. Orengo CA, Michie AD, Jones S et al (1997) CATH—a hierarchic classification of protein domain structures. Structure 5(8):1093–1108

    Article  CAS  PubMed  Google Scholar 

  20. Guyon F, Tufféry P (2014) Fast protein fragment similarity scoring using a Binet-Cauchy kernel. Bioinformatics 30(6):784–791

    Article  CAS  PubMed  Google Scholar 

  21. Fiorucci S, Zacharias M (2010) Binding site prediction and improved scoring during flexible protein-protein docking with ATTRACT. Proteins 78:3131–3139

    Article  CAS  PubMed  Google Scholar 

  22. Saladin A, Fiorucci S, Poulain P et al (2009) PTools: an opensource molecular docking library. BMC Struct Biol 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  23. Padmanabhan B, Tong KI, Ohta T et al (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21(5):689–700

    Article  CAS  PubMed  Google Scholar 

  24. Xu H, Fairman JW, Wijerathna SR et al (2008) The structural basis for peptidomimetic inhibition of eukaryotic ribonucleotide reductase: a conformationally flexible pharmacophore. J Med Chem 51(15):4653–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamiable A, Thévenet P, Rey J et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454. doi:10.1093/nar/gkw329

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by the French IA bioinformatics BipBip grant (ANR-10-BINF-0003), French Institute for Bioinformatics (IFB) (ANR-11-INBS-0013), and INSERM UMR-S 973 recurrent funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Tuffery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lamiable, A., Thévenet, P., Eustache, S., Saladin, A., Moroy, G., Tuffery, P. (2017). Peptide Suboptimal Conformation Sampling for the Prediction of Protein-Peptide Interactions. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics