Skip to main content

Binding Specificity Profiles from Computational Peptide Screening

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

The computational peptide screening method is a Monte Carlo-based procedure to systematically characterize the specificity of a peptide-binding site. The method is based on a generalized-ensemble algorithm in which the peptide sequence has become a dynamic variable, i.e., molecular simulations with ordinary conformational moves are enhanced with a type of “mutational” move such that proper statistics are achieved for multiple sequences in a single run. The peptide screening method has two main steps. In the first, reference simulations of the unbound state are performed and used to parametrize a linear model of the unbound state free energy, determined by requiring that the marginal distribution of peptide sequences is approximately flat. In the second step, simulations of the bound state are performed. By using the linear model as a free energy reference point, the marginal distribution of peptide sequences becomes skewed towards sequences with higher binding free energies. From analyses of the sequences generated in the second step and their conformational ensembles, information on peptide binding specificity, relative binding affinities, and the molecular basis of specificity can be achieved. Here we demonstrate how the algorithm can be implemented and applied to determine the peptide binding specificity of a PDZ domain from the protein GRIP1.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  PubMed  Google Scholar 

  2. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, et al (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3:e405

    Article  PubMed  PubMed Central  Google Scholar 

  4. Teyra J, Sidhu SS, Kim PM (2012) Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains. FEBS Lett 586:2631–2637

    Article  CAS  PubMed  Google Scholar 

  5. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    Article  CAS  PubMed  Google Scholar 

  6. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J (2012) Towards the physical basis of how intrinsic disorder mediates protein function. Arch Biochem Biophys 524:123–131

    Article  CAS  PubMed  Google Scholar 

  8. Hsu WL, Oldfield CJ, Xue B, Meng J, Huang F, et al (2013) Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Sci 22:258–273

    Article  CAS  PubMed  Google Scholar 

  9. Zhou HX (2012) Intrinsic disorder: signaling via highly specific but short-lived association. Trends Biochem Sci 37:43–48

    Article  CAS  PubMed  Google Scholar 

  10. Staneva I, Huang Y, Liu Z, Wallin S (2012) Binding of two intrinsically disordered peptides to a multi-specific protein: a combined Monte Carlo and molecular dynamics study. PLoS Comput Biol 8:e1002682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma R, Raduly Z, Miskei M, Fuxreiter M (2015) Fuzzy complexes: specific binding without complete folding. FEBS Lett 589:2533–2542

    Article  CAS  PubMed  Google Scholar 

  12. Uversky VN, Dunker AK (2015) The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Rep 5:1

    Google Scholar 

  13. Bhattacherjee A, Wallin S (2013) Exploring protein-peptide binding specificity through computational peptide screening. PLoS Comput Biol 9:e1003277

    Article  PubMed  PubMed Central  Google Scholar 

  14. Im YJ, Park SH, Rho SH, Lee JH, Kang GB, et al (2003) Crystal structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization. J Biol Chem 278:8501–8507

    Article  CAS  PubMed  Google Scholar 

  15. Lee HJ, Zheng JJ (2010) PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Remaut H, Waksman G (2006) Protein-protein interaction through beta-strand addition. Trends Biochem Sci 31:436–444

    Article  CAS  PubMed  Google Scholar 

  17. Staneva I, Wallin S (2009) All-atom Monte Carlo approach to protein-peptide binding. J Mol Biol 393:1118–1128

    Article  CAS  PubMed  Google Scholar 

  18. Staneva I, Wallin S (2011) Binding free energy landscape of domain-peptide interactions. PLoS Comput Biol 7:e1002131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Irbäck A, Samuelsson B, Sjunnesson F, Wallin S (2003) Thermodynamics of alpha- and beta-structure formation in proteins. Biophys J 85:1466–1473

    Article  PubMed  PubMed Central  Google Scholar 

  20. Irbäck A, Peterson C, Potthast F, Sandelin E (1998) Monte Carlo procedure for protein design. Phys Rev E 58:5249–5252

    Article  Google Scholar 

  21. Irbäck A, Peterson C, Potthast F, Sandelin E (1999) Design of sequences with good folding properties in coarse-grained protein models. Structure 7:347–360

    Article  PubMed  Google Scholar 

  22. Favrin G, Irbäck A, Sjunnesson F (2003) Monte Carlo update for chain molecules: biased Gaussian steps in torsional space. J Chem Phys 114:8154–8158

    Article  Google Scholar 

  23. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  24. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wallin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wallin, S. (2017). Binding Specificity Profiles from Computational Peptide Screening. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics