Skip to main content

Simplifying the Design of Protein-Peptide Interaction Specificity with Sequence-Based Representations of Atomistic Models

  • Protocol
  • First Online:
Modeling Peptide-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

Computationally designed peptides targeting protein-protein interaction interfaces are of great interest as reagents for biological research and potential therapeutics. In recent years, it has been shown that detailed structure-based calculations can, in favorable cases, describe relevant determinants of protein-peptide recognition. Yet, despite large increases in available computing power, such accurate modeling of the binding reaction is still largely outside the realm of protein design. The chief limitation is in the large sequence spaces generally involved in protein design problems, such that it is typically infeasible to apply expensive modeling techniques to score each sequence. Toward addressing this issue, we have previously shown that by explicitly evaluating the scores of a relatively small number of sequences, it is possible to synthesize a direct mapping between sequences and scores, such that the entire sequence space can be analyzed extremely rapidly. The associated method, called Cluster Expansion, has been used in a number of studies to design binding affinity and specificity. In this chapter, we provide instructions and guidance for applying this technique in the context of designing protein-peptide interactions to enable the use of more detailed and expensive scoring approaches than is typically possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 3(12):2090–2099

    Article  CAS  Google Scholar 

  2. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452

    Article  CAS  PubMed  Google Scholar 

  3. Kuriyan J, Cowburn D (1997) Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 26:259–288

    Article  CAS  PubMed  Google Scholar 

  4. Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, Schymkowitz J (2011) Computational design of peptide ligands. Trends Biotechnol 29(5):231–239

    Article  CAS  PubMed  Google Scholar 

  5. Chen JR, Chang BH, Allen JE, Stiffler MA, MacBeath G (2008) Predicting PDZ domain-peptide interactions from primary sequences. Nat Biotechnol 26(9):1041–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamisetty H, Ghosh B, Langmead CJ, Bailey-Kellogg C (2014) Learning sequence determinants of protein:protein interaction specificity with sparse graphical models. Res Comput Mol Biol 8394:129–143

    PubMed  PubMed Central  Google Scholar 

  7. Gan W, Roux B (2009) Binding specificity of SH2 domains: insight from free energy simulations. Proteins 74(4):996–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith CA, Kortemme T (2010) Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol 402(2):460–474

    Article  CAS  PubMed  Google Scholar 

  9. King CA, Bradley P (2010) Structure-based prediction of protein-peptide specificity in Rosetta. Proteins 78(16):3437–3449

    Article  CAS  PubMed  Google Scholar 

  10. London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O (2011) Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol 7(10):e1002170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. London N, Gulla S, Keating AE, Schueler-Furman O (2012) In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. Biochemistry 51(29):5841–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanover C, Bradley P (2011) Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc Natl Acad Sci U S A 108(17):6981–6986

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR (2012) Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 8(4):e1002477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DeBartolo J, Dutta S, Reich L, Keating AE (2012) Predictive Bcl-2 family binding models rooted in experiment or structure. J Mol Biol 422(1):124–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeBartolo J, Taipale M, Keating AE (2014) Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. PLoS Comput Biol 10(6):e1003693

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grigoryan G, Zhou F, Lustig SR, Ceder G, Morgan D, Keating AE (2006) Ultra-fast evaluation of protein energies directly from sequence. PLoS Comput Biol 2(6):551–563

    Article  CAS  Google Scholar 

  17. Zhou F, Grigoryan G, Lustig SR, Keating AE, Ceder G, Morgan D (2005) Coarse-graining protein energetics in sequence variables. Phys Rev Lett 95(14):148103

    Article  PubMed  Google Scholar 

  18. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458(7240):859–U852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng F, Jewell H, Fitzpatrick J, Zhang J, Mierke DF, Grigoryan G (2015) Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway. J Mol Biol 427(2):491–510

    Article  CAS  PubMed  Google Scholar 

  20. Negron C, Keating AE (2014) A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 136(47):16544–16556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Negron C, Keating AE (2013) Multistate protein design using CLEVER and CLASSY. Methods Enzymol 523:171–190

    Article  CAS  PubMed  Google Scholar 

  22. Hahn S, Ashenberg O, Grigoryan G, Keating AE (2010) Identifying and reducing error in cluster-expansion approximations of protein energies. J Comput Chem 31(16):2900–2914

    CAS  PubMed  Google Scholar 

  23. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YEA, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6(4):e18934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng F, Grigoryan G (2016) Design of specific peptide-protein recognition. Methods Mol Biol 1414:249–263

    Article  PubMed  Google Scholar 

  26. Tonikian R, Zhang YN, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin XF, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS (2008) A specificity map for the PDZ domain family. PLoS Biol 6(9):2043–2059

    Article  CAS  Google Scholar 

  27. Kingsford CL, Chazelle B, Singh M (2005) Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21(7):1028–1036

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gevorg Grigoryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zheng, F., Grigoryan, G. (2017). Simplifying the Design of Protein-Peptide Interaction Specificity with Sequence-Based Representations of Atomistic Models. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics