Skip to main content

Microglial Activation by Genetically Targeted Conditional Neuronal Ablation in the Zebrafish

  • Protocol
  • First Online:
Inflammation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1559))

Abstract

In neurodegenerative diseases activation of immune cells is thought to play a major role. Microglia are the main immune cells of the central nervous system. When encountering disease related stimuli microglia adopt an activated phenotype that typically includes a rounded morphology. The exact role of microglia or other potentially infiltrating myeloid cells in different brain diseases is not fully understood. In this chapter we present techniques in zebrafish to induce degeneration of neurons, to activate the microglia, and to study activation phenotypes by immunohistochemistry and in vivo by fluorescence microscopic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31(45):16064–16069. doi:10.1523/JNEUROSCI.4158-11.2011, doi:31/45/16064 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi:10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  3. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997, doi:nn1997 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235. doi:10.1038/nn.2923, doi:nn.2923 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Oosterhof N, Boddeke E, van Ham TJ (2015) Immune cell dynamics in the CNS: Learning from the zebrafish. Glia 63(5):719–735. doi:10.1002/glia.22780

    Article  PubMed  Google Scholar 

  6. van Ham TJ, Kokel D, Peterson RT (2012) Apoptotic cells are cleared by directional migration and elmo1- dependent macrophage engulfment. Curr Biol 22(9):830–836. doi:10.1016/j.cub.2012.03.027, doi:S0960-9822(12)00314-4 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Ham TJ, Brady CA, Kalicharan RD, Oosterhof N, Kuipers J, Veenstra-Algra A, Sjollema KA, Peterson RT, Kampinga HH, Giepmans BN (2014) Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation. Dis Model Mech 7(7):857–869. doi:10.1242/dmm.014886, doi:7/7/857 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133(5):916–927. doi:10.1016/j.cell.2008.04.037, doi:S0092-8674(08)00611-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Herbomel P, Thisse B, Thisse C (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238(2):274–288. doi:10.1006/dbio.2001.0393, doi:S0012-1606(01)90393-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637, doi:science.1194637 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035. doi:10.1002/dvdy.21100

    Article  CAS  PubMed  Google Scholar 

  12. Oosterhof N, Holtman IR, Kuil LE, van der Linde HC, Boddeke EW, Eggen BJ, van Ham TJ (2016) Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish. Glia 65(1):138–149. doi:10.1002/glia.23083

    Article  PubMed  PubMed Central  Google Scholar 

  13. Distel M, Wullimann MF, Koster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 106(32):13365–13370. doi:10.1073/pnas.0903060106, doi:0903060106 [pii]

  14. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56. doi:10.1182/blood-2010-10-314120, doi:blood-2010-10-314120 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304(2):811–824. doi:10.1016/j.ydbio.2007.01.033, doi:S0012-1606(07)00080-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Ham TJ, Mapes J, Kokel D, Peterson RT (2010) Live imaging of apoptotic cells in zebrafish. FASEB J 24(11):4336–4342. doi:10.1096/fj.10-161018, doi:fj.10-161018 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karlsson J, von Hofsten J, Olsson PE (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3(6):522–527. doi:10.1007/s1012601-0053-4

    Article  CAS  Google Scholar 

  18. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189. doi:10.1016/j.stem.2007.11.002, doi:S1934-5909(07)00275-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was sponsored by ZonMW [VENI grant number 016.136.150], a Marie Curie Career Integration Grant [Saving Dying Neurons, 322368], and an Alzheimer Nederland fellowship [grant number WE.15-2012-01] to T.J.v.H..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjakko J. van Ham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Oosterhof, N., Kuil, L.E., van Ham, T.J. (2017). Microglial Activation by Genetically Targeted Conditional Neuronal Ablation in the Zebrafish. In: Clausen, B., Laman, J. (eds) Inflammation. Methods in Molecular Biology, vol 1559. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6786-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6786-5_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6784-1

  • Online ISBN: 978-1-4939-6786-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics