Skip to main content

Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology

  • Protocol
  • First Online:
Protein Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1558))

Abstract

Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein–protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pace NJ, Weerapana E (2013) Diverse functional roles of reactive cysteines. ACS Chem Biol 8(2):283–296. doi:10.1021/cb3005269

    Article  CAS  PubMed  Google Scholar 

  2. Go YM, Chandler JD, Jones DP (2015) The cysteine proteome. Free Radic Biol Med 84:227–245. doi:10.1016/j.freeradbiomed.2015.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachi A, Dalle-Donne I, Scaloni A (2013) Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 113(1):596–698. doi:10.1021/cr300073p

    Article  CAS  PubMed  Google Scholar 

  4. Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157. doi:10.1016/j.freeradbiomed.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  5. Wani R, Nagata A, Murray BW (2014) Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology. Front Pharmacol 5:224. doi:10.3389/fphar.2014.00224

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 151(3):255–261. doi:10.1093/jb/mvs006

    Article  CAS  PubMed  Google Scholar 

  7. Tajc SG, Tolbert BS, Basavappa R, Miller BL (2004) Direct determination of thiol pKa by isothermal titration microcalorimetry. J Am Chem Soc 126(34):10508–10509. doi:10.1021/ja047929u

    Article  CAS  PubMed  Google Scholar 

  8. Gupta V, Carroll KS (2014) Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 1840(2):847–875. doi:10.1016/j.bbagen.2013.05.040

    Article  CAS  PubMed  Google Scholar 

  9. Popov D (2014) Protein S-glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem 120(4):123–130. doi:10.3109/13813455.2014.944544

    Article  CAS  PubMed  Google Scholar 

  10. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1. doi:10.1126/stke.2001.86.pl1

    CAS  PubMed  Google Scholar 

  11. Forrester MT, Foster MW, Benhar M, Stamler JS (2009) Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 46(2):119–126. doi:10.1016/j.freeradbiomed.2008.09.034

    Article  CAS  PubMed  Google Scholar 

  12. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72. doi:10.1126/scisignal.2000464

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wani R, Qian J, Yin L, Bechtold E, King SB, Poole LB, Paek E, Tsang AW, Furdui CM (2011) Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc Natl Acad Sci U S A 108(26):10550–10555. doi:10.1073/pnas.1011665108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furdui CM, Poole LB (2014) Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom Rev 33(2):126–146. doi:10.1002/mas.21384

    Article  CAS  PubMed  Google Scholar 

  15. Murray CI, Van Eyk JE (2012) Chasing cysteine oxidative modifications: proteomic tools for characterizing cysteine redox status. Circ Cardiovasc Genet 5(5):591. doi:10.1161/CIRCGENETICS.111.961425

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang YC, Huang CN, Lin CH, Chang HC, Wu CC (2010) Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation. Proteomics 10(16):2961–2971. doi:10.1002/pmic.200900850

    Article  CAS  PubMed  Google Scholar 

  17. Couvertier SM, Zhou Y, Weerapana E (2014) Chemical-proteomic strategies to investigate cysteine posttranslational modifications. Biochim Biophys Acta 1844(12):2315–2330. doi:10.1016/j.bbapap.2014.09.024

    Article  CAS  PubMed  Google Scholar 

  18. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468(7327):1115–1118. doi:10.1038/nature09599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz PA, Kuzmic P, Solowiej J, Bergqvist S, Bolanos B, Almaden C, Nagata A, Ryan K, Feng J, Dalvie D, Kath JC, Xu M, Wani R, Murray BW (2014) Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc Natl Acad Sci U S A 111:173–178. doi:10.1073/pnas.1313733111

    Article  CAS  PubMed  Google Scholar 

  20. Le HT, Chaffotte AF, Demey-Thomas E, Vinh J, Friguet B, Mary J (2009) Impact of hydrogen peroxide on the activity, structure, and conformational stability of the oxidized protein repair enzyme methionine sulfoxide reductase A. J Mol Biol 393(1):58–66. doi:10.1016/j.jmb.2009.07.072

    Article  CAS  PubMed  Google Scholar 

  21. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285(43):33154–33164. doi:10.1074/jbc.M110.143685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Victor KG, Rady JM, Cross JV, Templeton DJ (2012) Proteomic profile of reversible protein oxidation using PROP, purification of reversibly oxidized proteins. PLoS One 7(2):e32527. doi:10.1371/journal.pone.0032527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG (2000) Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem 283(2):214–221. doi:10.1006/abio.2000.4623

    Article  CAS  PubMed  Google Scholar 

  24. Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3(6):1228–1233. doi:10.1021/pr049887e

    Article  CAS  PubMed  Google Scholar 

  25. Chiappetta G, Ndiaye S, Igbaria A, Kumar C, Vinh J, Toledano MB (2010) Proteome screens for Cys residues oxidation: the redoxome. Methods Enzymol 473:199–216. doi:10.1016/S0076-6879(10)73010-X

    Article  CAS  PubMed  Google Scholar 

  26. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795. doi:10.1038/nature09472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim HJ, Ha S, Lee HY, Lee KJ (2015) ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom Rev 34(2):184–208. doi:10.1002/mas.21430

    Article  PubMed  Google Scholar 

  28. Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ (2013) Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Anal Chem 85(7):3774–3780. doi:10.1021/ac400166e

    Article  CAS  PubMed  Google Scholar 

  29. Yuan K, Liu Y, Chen HN, Zhang L, Lan J, Gao W, Dou Q, Nice EC, Huang C (2015) Thiol-based redox proteomics in cancer research. Proteomics 15(2–3):287–299. doi:10.1002/pmic.201400164

    Article  CAS  PubMed  Google Scholar 

  30. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958. doi:10.1038/nrm2067

    Article  CAS  PubMed  Google Scholar 

  31. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. doi:10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  32. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi:10.1074/mcp.M400129-MCP200

    Article  CAS  PubMed  Google Scholar 

  33. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105(24):8197–8202. doi:10.1073/pnas.0707723105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marino SM, Gladyshev VN (2011) Redox biology: computational approaches to the investigation of functional cysteine residues. Antioxid Redox Signal 15(1):135–146. doi:10.1089/ars.2010.3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raimondi D, Orlando G, Vranken WF (2015) Clustering-based model of cysteine co-evolution improves disulfide bond connectivity prediction and reduces homologous sequence requirements. Bioinformatics 31(8):1219–1225. doi:10.1093/bioinformatics/btu794

    Article  PubMed  Google Scholar 

  36. Sun MA, Wang Y, Cheng H, Zhang Q, Ge W, Guo D (2012) RedoxDB—a curated database for experimentally verified protein oxidative modification. Bioinformatics 28(19):2551–2552. doi:10.1093/bioinformatics/bts468

    Article  CAS  PubMed  Google Scholar 

  37. Bostan H, Salim N, Hussein ZA, Klappa P, Shamsir MS (2012) CMD: a database to store the bonding states of cysteine motifs with secondary structures. Adv Bioinf 2012:849830. doi:10.1155/2012/849830

    Article  Google Scholar 

  38. Chen YJ, Lu CT, Lee TY, Chen YJ (2014) dbGSH: a database of S-glutathionylation. Bioinformatics 30(16):2386–2388. doi:10.1093/bioinformatics/btu301

    Article  CAS  PubMed  Google Scholar 

  39. Ferre F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33(Web Server issue):W230–W232. doi:10.1093/nar/gki412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ceroni A, Passerini A, Vullo A, Frasconi P (2006) DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res 34(Web Server issue):W177–W181. doi:10.1093/nar/gkl266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin HH, Tseng LY (2010) DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines. Nucleic Acids Res 38(Web Server issue):W503–W507. doi:10.1093/nar/gkq514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fariselli P, Riccobelli P, Casadio R (1999) Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins. Proteins 36(3):340–346

    Article  CAS  PubMed  Google Scholar 

  43. Visscher M, Arkin MR, Dansen TB (2015) Covalent targeting of acquired cysteines in cancer. Curr Opin Chem Biol 30:61–67. doi:10.1016/j.cbpa.2015.11.004

    Article  PubMed  Google Scholar 

  44. Yu HA, Tian SK, Drilon AE, Borsu L, Riely GJ, Arcila ME, Ladanyi M (2015) Acquired resistance of EGFR-mutant lung cancer to a T790M-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain. JAMA Oncol 1(7):982–984. doi:10.1001/jamaoncol.2015.1066

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brion W. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wani, R., Murray, B.W. (2017). Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. In: Wu, C., Arighi, C., Ross, K. (eds) Protein Bioinformatics. Methods in Molecular Biology, vol 1558. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6783-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6783-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6781-0

  • Online ISBN: 978-1-4939-6783-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics