Skip to main content

Structure-Based Virtual Screening

  • Protocol
  • First Online:
Book cover Protein Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1558))

Abstract

Structure-based virtual screening (SBVS) is a computational approach used in the early-stage drug discovery campaign to search a chemical compound library for novel bioactive molecules against a certain drug target. It utilizes the three-dimensional (3D) structure of the biological target, obtained from X-ray, NMR, or computational modeling, to dock a collection of chemical compounds into the binding site and select a subset of these compounds based on the predicted binding scores for further biological evaluation. In the present work, we illustrate the basic process of conducting a SBVS with examples using freely accessible tools and resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273–276

    Article  CAS  PubMed  Google Scholar 

  2. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20:2839–2860

    Article  CAS  PubMed  Google Scholar 

  3. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11:580–594

    Article  CAS  PubMed  Google Scholar 

  4. Köppen H (2009) Virtual screening—what does it give us? Curr Opin Drug Discov Devel 12:397–407

    PubMed  Google Scholar 

  5. Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591

    Article  CAS  PubMed  Google Scholar 

  6. Heikamp K, Bajorath J (2013) The future of virtual compound screening. Chem Biol Drug Des 81:33–40

    Article  CAS  PubMed  Google Scholar 

  7. Muegge I, Oloff S (2006) Advances in virtual screening. Drug Discov Today Technol 3:405–411

    Article  Google Scholar 

  8. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  PubMed  Google Scholar 

  9. Stahura FL, Bajorath J (2005) New methodologies for ligand-based virtual screening. Curr Pharm Des 11:1189–1202

    Article  CAS  PubMed  Google Scholar 

  10. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins 65:15–26

    Article  CAS  PubMed  Google Scholar 

  11. Moitessier N, Englebienne P, Lee D et al (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26

    CAS  PubMed  Google Scholar 

  12. Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  PubMed  Google Scholar 

  13. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  14. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  15. Moustakas DT, Lang PT, Pegg S et al (2006) Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 20:601–619

    Article  CAS  PubMed  Google Scholar 

  16. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  17. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  19. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  20. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  21. Cheng T, Li Q, Zhou Z et al (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Q, Cheng T, Wang Y, Bryant SH (2010) PubChem as a public resource for drug discovery. Drug Discov Today 15(23–24):1052–1057. doi: 10.1016/j.drudis.2010.10.003

  24. Wang Y, Xiao J, Suzek TO et al (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  26. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124

    Article  CAS  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  29. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang GG, Cai L, Pasillas MP, Kamps MP (2007) NUP98–NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9:804–812

    Article  CAS  PubMed  Google Scholar 

  31. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  CAS  PubMed  Google Scholar 

  32. Warren GL, Do TD, Kelley BP et al (2012) Essential considerations for using protein-ligand structures in drug discovery. Drug Discov Today 17:1270–1281

    Article  CAS  PubMed  Google Scholar 

  33. Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47:2462–2474

    Article  CAS  PubMed  Google Scholar 

  34. Miteva MA, Guyon F, Tufféry P (2010) Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38:W622–W627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  36. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42:5100–5109

    Article  CAS  PubMed  Google Scholar 

  37. Wang R, Wang S (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 41:1422–1426

    Article  CAS  PubMed  Google Scholar 

  38. Swann SL, Brown SP, Muchmore SW et al (2011) A unified, probabilistic framework for structure- and ligand-based virtual screening. J Med Chem 54:1223–1232

    Article  CAS  PubMed  Google Scholar 

  39. Osguthorpe DJ, Sherman W, Hagler AT (2012) Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J Phys Chem B 116:6952–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Durrant JD, McCammon JA (2010) Computer-aided drug-discovery techniques that account for receptor flexibility. Curr Opin Pharmacol 10:770–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wale N, Karypis G, Watson IA (2007) Method for effective virtual screening and scaffold-hopping in chemical compounds. Comput Syst Bioinformatics Conf 6:403–414

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingliang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Li, Q., Shah, S. (2017). Structure-Based Virtual Screening. In: Wu, C., Arighi, C., Ross, K. (eds) Protein Bioinformatics. Methods in Molecular Biology, vol 1558. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6783-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6783-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6781-0

  • Online ISBN: 978-1-4939-6783-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics