Skip to main content

Computational and Statistical Methods for High-Throughput Mass Spectrometry-Based PTM Analysis

  • Protocol
  • First Online:
Protein Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1558))

Abstract

Cell signaling and functions heavily rely on post-translational modifications (PTMs) of proteins. Their high-throughput characterization is thus of utmost interest for multiple biological and medical investigations. In combination with efficient enrichment methods, peptide mass spectrometry analysis allows the quantitative comparison of thousands of modified peptides over different conditions. However, the large and complex datasets produced pose multiple data interpretation challenges, ranging from spectral interpretation to statistical and multivariate analyses. Here, we present a typical workflow to interpret such data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minguez P, Letunic I, Parca L et al (2013) PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res 41:D306–D311

    Article  CAS  PubMed  Google Scholar 

  2. Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  3. Munoz J, Heck AJ (2014) From the human genome to the human proteome. Angewandte Chem Int Ed Engl 53:10864–10866

    Article  CAS  Google Scholar 

  4. Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    Article  CAS  PubMed  Google Scholar 

  5. Solari FA, Dell’Aica M, Sickmann A et al (2015) Why phosphoproteomics is still a challenge. Mol Biosyst 11(6):1487–1493

    Article  CAS  PubMed  Google Scholar 

  6. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tran JC, Zamdborg L, Ahlf DR et al (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480:254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chait BT (2006) Chemistry. Mass spectrometry: bottom-up or top-down? Science 314:65–66

    Article  CAS  PubMed  Google Scholar 

  9. Perkel JM (2015) Top-down proteomics: turning protein mass spec upside-down. Science 349:1243–1245

    Article  Google Scholar 

  10. Gevaert K, Van Damme P, Ghesquiere B et al (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7:2698–2718

    Article  CAS  PubMed  Google Scholar 

  11. Vaudel M, Barsnes H, Bjerkvig R et al (2016) Practical considerations for omics experiments in biomedical sciences. Curr Pharm Biotechnol 17:105–114

    Article  CAS  PubMed  Google Scholar 

  12. Schwämmle V, Verano-Braga T, Roepstorff P (2015) Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins. J Proteomics 129:3–15

    Article  PubMed  Google Scholar 

  13. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  PubMed  Google Scholar 

  14. Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965

    Article  CAS  PubMed  Google Scholar 

  15. Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385

    Article  CAS  PubMed  Google Scholar 

  16. McAlister GC, Huttlin EL, Haas W et al (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84:7469–7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  18. Thompson A, Schafer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  19. Vaudel M, Sickmann A, Martens L (2010) Peptide and protein quantification: a map of the minefield. Proteomics 10:650–670

    Article  CAS  PubMed  Google Scholar 

  20. Edwards AV, Edwards GJ, Schwämmle V et al (2014) Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain. J Proteome Res 13:260–267

    Article  CAS  PubMed  Google Scholar 

  21. Edwards AV, Schwämmle V, Larsen MR (2014) Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J Proteomics 101:77–87

    Article  CAS  PubMed  Google Scholar 

  22. Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545

    Article  CAS  PubMed  Google Scholar 

  23. Vizcaino JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaudel M, Venne AS, Berven FS et al (2014) Shedding light on black boxes in protein identification. Proteomics 14:1001–1005

    Article  CAS  PubMed  Google Scholar 

  25. Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. French WR, Zimmerman LJ, Schilling B et al (2015) Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in ProteoWizard’s msConvert. J Proteome Res 14:1299–1307

    Article  CAS  PubMed  Google Scholar 

  27. Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11:996–999

    Article  CAS  PubMed  Google Scholar 

  28. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  PubMed  Google Scholar 

  29. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6:654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dorfer V, Pichler P, Stranzl T et al (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13:3679–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242

    Article  CAS  PubMed  Google Scholar 

  33. Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13:22–24

    Article  CAS  PubMed  Google Scholar 

  34. Diament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from tandem mass spectra. J Proteome Res 10:3871–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  36. Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33:22–24

    Article  CAS  PubMed  Google Scholar 

  37. Schwämmle V, Leon IR, Jensen ON (2013) Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates. J Proteome Res 12:3874–3883

    Article  PubMed  Google Scholar 

  38. Barsnes H, Vaudel M, Martens L (2015) JSparklines: making tabular proteomics data come alive. Proteomics 15:1428–1431

    Article  CAS  PubMed  Google Scholar 

  39. Polpitiya AD, Qian W-J, Jaitly N et al (2008) DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24:1556–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3

    PubMed  Google Scholar 

  41. Breitling R, Armengaud P, Amtmann A et al (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  CAS  PubMed  Google Scholar 

  42. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 64:479–498

    Article  Google Scholar 

  43. Colaert N, Degroeve S, Helsens K et al (2011) Analysis of the resolution limitations of peptide identification algorithms. J Proteome Res 10:5555–5561

    Article  CAS  PubMed  Google Scholar 

  44. Knudsen GM, Chalkley RJ (2011) The effect of using an inappropriate protein database for proteomic data analysis. PLoS One 6:e20873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muth T, Kolmeder CA, Salojarvi J et al (2015) Navigating through metaproteomics data: a logbook of database searching. Proteomics 15:3439–3453

    Article  CAS  PubMed  Google Scholar 

  46. Vaudel M, Sickmann A, Martens L (2014) Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Biochim Biophys Acta 1844:12–20

    Article  CAS  PubMed  Google Scholar 

  47. Chalkley RJ, Clauser KR (2012) Modification site localization scoring: strategies and performance. Mol Cell Proteomics 11:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beausoleil SA, Villen J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292

    Article  CAS  PubMed  Google Scholar 

  49. Taus T, Kocher T, Pichler P et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10:5354–5362

    Article  CAS  PubMed  Google Scholar 

  50. Vaudel M, Breiter D, Beck F et al (2013) D-score: a search engine independent MD-score. Proteomics 13:1036–1041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VS was funded by the Danish Council for Independent Research and the EU ELIXIR consortium (Danish ELIXIR node). This work was conducted as part of the EuPA Bioinformatics Community (EuBIC) initiative supported by the European Proteomics Association (EuPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Schwämmle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Schwämmle, V., Vaudel, M. (2017). Computational and Statistical Methods for High-Throughput Mass Spectrometry-Based PTM Analysis. In: Wu, C., Arighi, C., Ross, K. (eds) Protein Bioinformatics. Methods in Molecular Biology, vol 1558. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6783-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6783-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6781-0

  • Online ISBN: 978-1-4939-6783-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics