Skip to main content

Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1558))

Abstract

Normal cellular functioning is maintained by macromolecular machines that control both core and specialized molecular tasks. These machines are in large part multi-subunit protein complexes that undergo regulation at multiple levels, from expression of requisite components to a vast array of post-translational modifications (PTMs). PTMs such as phosphorylation, ubiquitination, and acetylation currently number more than 200,000 in the human proteome and function within all molecular pathways. Here we provide a framework for systematically studying these PTMs in the context of global protein–protein interaction networks. This analytical framework allows insight into which functions specific PTMs tend to cluster in, and furthermore which complexes either single or multiple PTM signaling pathways converge on.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vidal M, Cusick ME, Barabási A (2011) Interactome networks and human disease. Cell 144(6):986–998. doi:10.1016/j.cell.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stelzl U (2013) Molecular interaction networks in the analyses of sequence variation and proteomics data. Proteomics Clin Appl 7(11–12):727–732. doi:10.1002/prca.201300039

    Article  CAS  PubMed  Google Scholar 

  3. Snider J, Kotlyar M, Saraon P et al (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol 11(12):848. doi:10.15252/msb.20156351

    Article  PubMed  PubMed Central  Google Scholar 

  4. Woodsmith J, Stelzl U (2014) Studying post-translational modifications with protein interaction networks. Curr Opin Struct Biol 24:34–44. doi:10.1016/j.sbi.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  5. Rolland T, Taşan M, Charloteaux B et al (2014) A proteome-scale map of the human interactome network. Cell 159(5):1212–1226. doi:10.1016/j.cell.2014.10.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163(3):712–723. doi:10.1016/j.cell.2015.09.053

    Article  CAS  PubMed  Google Scholar 

  7. Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162(2):425–440. doi:10.1016/j.cell.2015.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wan C, Borgeson B, Phanse S et al (2015) Panorama of ancient metazoan macromolecular complexes. Nature 525(7569):339–344. doi:10.1038/nature14877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venkatesan K, Rual J, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6(1):83–90. doi:10.1038/nmeth.1280

    Article  CAS  PubMed  Google Scholar 

  10. Mellacheruvu D, Wright Z, Couzens AL et al (2013) The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat Methods 10(8):730–736. doi:10.1038/nmeth.2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varjosalo M, Sacco R, Stukalov A et al (2013) Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods 10(4):307–314. doi:10.1038/nmeth.2400

    Article  CAS  PubMed  Google Scholar 

  12. Weimann M, Grossmann A, Woodsmith J et al (2013) A Y2H-seq approach defines the human protein methyltransferase interactome. Nat Methods 10(4):339–342. doi:10.1038/nmeth.2397

    Article  CAS  PubMed  Google Scholar 

  13. Yu H, Tardivo L, Tam S et al (2011) Next-generation sequencing to generate interactome datasets. Nat Methods 8(6):478–480. doi:10.1038/nmeth.1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grossmann A, Benlasfer N, Birth P et al (2015) Phospho-tyrosine dependent protein–protein interaction network. Mol Syst Biol 11(3):794. doi:10.15252/msb.20145968

    Article  PubMed  Google Scholar 

  15. Sahni N, Yi S, Taipale M et al (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161(3):647–660. doi:10.1016/j.cell.2015.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei X, Das J, Fragoza R et al (2014) A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genet 10(12):e1004819. doi:10.1371/journal.pgen.1004819

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kamburov A, Stelzl U, Lehrach H et al (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D793–D800. doi:10.1093/nar/gks1055

    Article  CAS  PubMed  Google Scholar 

  18. Chatr-Aryamontri A, Breitkreutz B, Oughtred R et al (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(Database issue):D470–D478. doi:10.1093/nar/gku1204

    Article  PubMed  Google Scholar 

  19. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363. doi:10.1093/nar/gkt1115

    Article  CAS  PubMed  Google Scholar 

  20. Schaefer MH, Fontaine J, Vinayagam A et al (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One 7(2):e31826. doi:10.1371/journal.pone.0031826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Das J, Yu H (2012) HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol 6:92. doi:10.1186/1752-0509-6-92

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vinayagam A, Hu Y, Kulkarni M et al (2013) Protein complex-based analysis framework for high-throughput data sets. Sci Signal 6(264):rs5. doi:10.1126/scisignal.2003629

    Article  PubMed  PubMed Central  Google Scholar 

  23. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1. doi:10.1038/srep00090

  24. Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143(5):686–693. doi:10.1016/j.cell.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39. doi:10.1038/nrc2559

    Article  PubMed  Google Scholar 

  26. von L S, Francavilla C, Olsen JV (2015) Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 12(5):469–487. doi:10.1586/14789450.2015.1078730

    Article  Google Scholar 

  27. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. doi:10.1126/scisignal.2000475

    Article  PubMed  Google Scholar 

  28. Rigbolt KT, Prokhorova TA, Akimov V et al (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4(164):rs3. doi:10.1126/scisignal.2001570

    Article  PubMed  Google Scholar 

  29. Swaney DL, Beltrao P, Starita L et al (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676–682. doi:10.1038/nmeth.2519

    Article  CAS  PubMed  Google Scholar 

  30. Beltrao P, Albanèse V, Kenner LR et al (2012) Systematic functional prioritization of protein posttranslational modifications. Cell 150(2):413–425. doi:10.1016/j.cell.2012.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Minguez P, Parca L, Diella F et al (2012) Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 8:599. doi:10.1038/msb.2012.31

    Article  PubMed  PubMed Central  Google Scholar 

  32. Woodsmith J, Kamburov A, Stelzl U (2013) Dual coordination of post translational modifications in human protein networks. PLoS Comput Biol 9(3):e1002933. doi:10.1371/journal.pcbi.1002933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lothrop AP, Torres MP, Fuchs SM (2013) Deciphering post-translational modification codes. FEBS Lett 587(8):1247–1257. doi:10.1016/j.febslet.2013.01.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng M, Scholten A, Heck AJR et al (2014) Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. J Proteome Res 13(1):249–259. doi:10.1021/pr4005579

    Article  CAS  PubMed  Google Scholar 

  35. Winter DL, Erce MA, Wilkins MR (2014) A web of possibilities: network-based discovery of protein interaction codes. J Proteome Res 13(12):5333–5338. doi:10.1021/pr500585p

    Article  CAS  PubMed  Google Scholar 

  36. Pejaver V, Hsu W, Xin F et al (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23(8):1077–1093. doi:10.1002/pro.2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao H, Li A, Wang M (2015) Systematic analysis and prediction of in situ cross talk of O-GlcNAcylation and phosphorylation. Biomed Res Int 2015:279823. doi:10.1155/2015/279823

    PubMed  PubMed Central  Google Scholar 

  38. Dewhurst HM, Choudhury S, Torres MP (2015) Structural analysis of PTM hotspots (SAPH-ire)—a quantitative informatics method enabling the discovery of novel regulatory elements in protein families. Mol Cell Proteomics 14(8):2285–2297. doi:10.1074/mcp.M115.051177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang Y, Xu B, Zhou X et al (2015) Systematic characterization and prediction of post-translational modification cross-talk. Mol Cell Proteomics 14(3):761–770. doi:10.1074/mcp.M114.037994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan G, Walther D (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol 11(2):e1004049. doi:10.1371/journal.pcbi.1004049

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murali T, Pacifico S, Yu J et al (2011) DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 39(Database issue):D736–D743. doi:10.1093/nar/gkq1092

    Article  CAS  PubMed  Google Scholar 

  42. Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270. doi:10.1093/nar/gkr1122

    Article  CAS  PubMed  Google Scholar 

  43. Adamcsek B, Palla G, Farkas IJ et al (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8):1021–1023. doi:10.1093/bioinformatics/btl039

    Article  CAS  PubMed  Google Scholar 

  44. Kalaev M, Smoot M, Ideker T et al (2008) NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24(4):594–596. doi:10.1093/bioinformatics/btm630

    Article  CAS  PubMed  Google Scholar 

  45. Sopko R, Foos M, Vinayagam A et al (2014) Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos. Dev Cell 31(1):114–127. doi:10.1016/j.devcel.2014.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang X, Coulombe-Huntington J, Kang S et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164(4):805–817. doi:10.1016/j.cell.2016.01.029

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Stelzl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Woodsmith, J., Stelzl, U., Vinayagam, A. (2017). Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes. In: Wu, C., Arighi, C., Ross, K. (eds) Protein Bioinformatics. Methods in Molecular Biology, vol 1558. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6783-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6783-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6781-0

  • Online ISBN: 978-1-4939-6783-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics