Advertisement

Isolation and Characterization of Vessel-Associated Stem/Progenitor Cells from Skeletal Muscle

  • Rossana Tonlorenzi
  • Giuliana Rossi
  • Graziella MessinaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1556)

Abstract

More than 10 years ago, we isolated from mouse embryonic dorsal aorta a population of vessel-associated stem/progenitor cells, originally named mesoangioblasts (MABs ) , capable to differentiate in all mesodermal-derived tissues, including skeletal muscle. Similar though not identical cells have been later isolated and characterized from small vessels of adult mouse and human skeletal muscles. When delivered through the arterial circulation, MABs cross the blood vessel wall and participate in skeletal muscle regeneration, leading to an amelioration of muscular dystrophies in different preclinical animal models. As such, human MABs have been used under clinical-grade conditions for a Phase I/II clinical trial for Duchenne muscular dystrophy , just concluded. Although some pericyte markers can be used to identify mouse and human MABs , no single unequivocal marker can be used to isolate MABs . As a result, MABs are mainly defined by their isolation method and functional properties. This chapter provides detailed methods for isolation, culture, and characterization of MABs in light of the recent identification of a new marker, PW1/Peg3, to screen and identify competent MABs before their use in cell therapy.

Key words

Mesoangioblasts Muscle stem cells Pericytes Mesodermal lineages Cell culture PW1/Peg3 

Notes

Acknowledgment

This work was supported by from the European Community, ERC StG2011 (RegeneratioNfix 280611) and the Italian Ministry of University and Research (MIUR-Futuro in Ricerca 2010).

References

  1. 1.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656. doi: 10.1242/dev.067587 CrossRefPubMedGoogle Scholar
  3. 3.
    McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138(17):3657–3666. doi: 10.1242/dev.068858 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646. doi: 10.1242/dev.067595 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. doi: 10.1242/dev.064162 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. doi: 10.1242/dev.069088 CrossRefPubMedGoogle Scholar
  7. 7.
    Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783PubMedGoogle Scholar
  8. 8.
    Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267. doi: 10.1038/ncb1542 CrossRefPubMedGoogle Scholar
  9. 9.
    Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12(3):257–266. doi: 10.1038/ncb2025 PubMedGoogle Scholar
  10. 10.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530CrossRefPubMedGoogle Scholar
  11. 11.
    LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111(4):589–601CrossRefPubMedGoogle Scholar
  12. 12.
    McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99(3):1341–1346. doi: 10.1073/pnas.032438799 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Benchaouir R, Meregalli M, Farini A, D’Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y (2007) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 1(6):646–657. doi: 10.1016/j.stem.2007.09.016 CrossRefPubMedGoogle Scholar
  14. 14.
    Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309(5732):314–317CrossRefPubMedGoogle Scholar
  16. 16.
    Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93(5):e51–e62CrossRefPubMedGoogle Scholar
  17. 17.
    Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Peault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25(9):1025–1034CrossRefPubMedGoogle Scholar
  18. 18.
    Meliga E, Strem BM, Duckers HJ, Serruys PW (2007) Adipose-derived cells. Cell Transplant 16(9):963–970CrossRefPubMedGoogle Scholar
  19. 19.
    Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492CrossRefPubMedGoogle Scholar
  20. 20.
    Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579. doi: 10.1038/nature05282 CrossRefPubMedGoogle Scholar
  21. 21.
    Gargioli C, Coletta M, De Grandis F, Cannata SM, Cossu G (2008) PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat Med 14(9):973–978CrossRefPubMedGoogle Scholar
  22. 22.
    Diaz-Manera J, Touvier T, Dellavalle A, Tonlorenzi R, Tedesco FS, Messina G, Meregalli M, Navarro C, Perani L, Bonfanti C, Illa I, Torrente Y, Cossu G (2010) Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death Dis 1:e61. doi: 10.1038/cddis.2010.35 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tedesco FS, Hoshiya H, D’Antona G, Gerli MF, Messina G, Antonini S, Tonlorenzi R, Benedetti S, Berghella L, Torrente Y, Kazuki Y, Bottinelli R, Oshimura M, Cossu G (2011) Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 3(96):96ra78. doi: 10.1126/scitranslmed.3002342 CrossRefPubMedGoogle Scholar
  24. 24.
    Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Int Med 266(4):372–389CrossRefGoogle Scholar
  25. 25.
    Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19. doi: 10.1172/JCI40373 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cossu G et al. (2015) EMBO Mol Med. 7(12):1513–1528. doi: 10.15252/emmm.201505636
  27. 27.
    Bonfanti C, Rossi G, Tedesco FS, Giannotta M, Benedetti S, Tonlorenzi R, Antonini S, Marazzi G, Dejana E, Sassoon D, Cossu G, Messina G (2015) PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nat Commun 6:6364. doi: 10.1038/ncomms7364 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Coletti D, Yang E, Marazzi G, Sassoon D (2002) TNFalpha inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO J 21(4):631–642CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. doi: 10.1038/ncomms1508 CrossRefPubMedGoogle Scholar
  30. 30.
    Quattrocelli M, Palazzolo G, Perini I, Crippa S, Cassano M, Sampaolesi M (2012) Mouse and human mesoangioblasts: isolation and characterization from adult skeletal muscles. Methods Mol Biol 798:65–76. doi: 10.1007/978-1-61779-343-1_4 CrossRefPubMedGoogle Scholar
  31. 31.
    Xie Y, Zhang J, Lin Y, Gaeta X, Meng X, Wisidagama DR, Cinkornpumin J, Koehler CM, Malone CS, Teitell MA, Lowry WE (2014) Defining the role of oxygen tension in human neural progenitor fate. Stem Cell Rep 3(5):743–757. doi: 10.1016/j.stemcr.2014.09.021 CrossRefGoogle Scholar
  32. 32.
    Leijten J, Georgi N, Moreira Teixeira L, van Blitterswijk CA, Post JN, Karperien M (2014) Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc Natl Acad Sci USA 111(38):13954–13959. doi: 10.1073/pnas.1410977111 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Correia C, Serra M, Espinha N, Sousa M, Brito C, Burkert K, Zheng Y, Hescheler J, Carrondo MJ, Saric T, Alves PM (2014) Combining hypoxia and bioreactor hydrodynamics boosts induced pluripotent stem cell differentiation towards cardiomyocytes. Stem Cell Rev 10(6):786–801. doi: 10.1007/s12015-014-9533-0 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Choi JR, Pingguan-Murphy B, Wan Abas WA, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WK (2014) Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun 448(2):218–224. doi: 10.1016/j.bbrc.2014.04.096 CrossRefPubMedGoogle Scholar
  35. 35.
    Estrada JC, Albo C, Benguria A, Dopazo A, Lopez-Romero P, Carrera-Quintanar L, Roche E, Clemente EP, Enriquez JA, Bernad A, Samper E (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Diff 19(5):743–755. doi: 10.1038/cdd.2011.172 CrossRefGoogle Scholar
  36. 36.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi: 10.1126/science.1116995 CrossRefPubMedGoogle Scholar
  37. 37.
    Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32(26):5979–5993. doi: 10.1016/j.biomaterials.2011.04.003 CrossRefPubMedGoogle Scholar
  38. 38.
    Heras-Bautista CO, Katsen-Globa A, Schloerer NE, Dieluweit S, Abd El Aziz OM, Peinkofer G, Attia WA, Khalil M, Brockmeier K, Hescheler J, Pfannkuche K (2014) The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 35(26):7374–7385. doi: 10.1016/j.biomaterials.2014.05.027 CrossRefPubMedGoogle Scholar
  39. 39.
    Serena E, Zatti S, Reghelin E, Pasut A, Cimetta E, Elvassore N (2010) Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integr Biol (Camb) 2(4):193–201. doi: 10.1039/b921401a CrossRefGoogle Scholar
  40. 40.
    Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887. doi: 10.1083/jcb.200405004 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yousef S, Benden C, Boyer D, Elidemir O, Frischer T, Goldfarb S, Lopez-Mitnik G, Mallory G, Visner G, Westall G, Schecter MG (2012) Lung transplantation in children following bone marrow transplantation: a multi-center experience. Pediatr Transplant doi: 10.1111/petr.12023

Copyright information

© Springer Science+Business Media LLC 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Rossana Tonlorenzi
    • 1
  • Giuliana Rossi
    • 2
  • Graziella Messina
    • 2
    Email author
  1. 1.INSPE (Institute of Experimental Neurology) San Raffaele Scientific InstituteMilanoItaly
  2. 2.Department of BiosciencesUniversity of MilanMilanItaly

Personalised recommendations