Skip to main content

Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cells

  • Protocol
  • First Online:
Book cover Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1556))

Abstract

Multinucleated myofibers, the functional contractile units of adult skeletal muscle, harbor mononuclear Pax7+ myogenic progenitors on their surface between the myofiber basal lamina and plasmalemma. These progenitors, known as satellite cells, are the primary myogenic stem cells in adult muscle. This chapter describes our laboratory protocols for isolating, culturing, and immunostaining intact myofibers from mouse skeletal muscle as a means for studying satellite cell dynamics. The first protocol discusses myofiber isolation from the flexor digitorum brevis (FDB) muscle. These short myofibers are plated in dishes coated with PureCol collagen (formerly known as Vitrogen) and maintained in a mitogen-poor medium (± supplemental growth factors). Employing such conditions, satellite cells remain at the surface of the parent myofiber while synchronously undergoing a limited number of proliferative cycles and rapidly differentiate. The second protocol discusses the isolation of longer myofibers from the extensor digitorum longus (EDL) muscle. These EDL myofibers are routinely plated individually as adherent myofibers in wells coated with Matrigel and maintained in a mitogen-rich medium, conditions in which satellite cells migrate away from the parent myofiber, proliferate extensively, and generate numerous differentiating progeny. Alternatively, these EDL myofibers can be plated as non-adherent myofibers in uncoated wells and maintained in a mitogen-poor medium (± supplemental growth factors), conditions that retain satellite cell progeny at the myofiber niche similar to the FDB myofiber cultures. However, the adherent myofiber format is our preferred choice for monitoring satellite cells in freshly isolated (Time 0) myofibers. We conclude this chapter by promoting the Nestin-GFP transgenic mouse as an efficient tool for direct analysis of satellite cells in isolated myofibers. While satellite cells have been often detected by their expression of the Pax7 protein or the Myf5nLacZ knockin reporter (approaches that are also detailed herein), the Nestin-GFP reporter distinctively permits quantification of satellite cells in live myofibers, which enables linking initial Time 0 numbers and subsequent performance upon culturing. We additionally point out to the implementation of the Nestin-GFP transgene for monitoring other selective cell lineages as illustrated by GFP expression in capillaries, endothelial tubes and neuronal cells. Myofibers from other types of muscles, such as diaphragm, masseter, and extraocular, can also be isolated and analyzed using protocols described herein. Collectively, this chapter provides essential tools for studying satellite cells in their native position and their interplay with the parent myofiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 20 March 2018

    Correction to: Eusebio Perdiguero and DDW Cornelison (eds.), Muscle Stem Cells: Methods and Protocols, Methods in Molecular Biology, vol. 1556, https://doi.org/10.1007/978-1-4939-6771-1

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yablonka-Reuveni Z (2011) The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 59:1041–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Montarras D, L’Honore A, Buckingham M (2013) Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 280:4036–4050

    CAS  PubMed  Google Scholar 

  4. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    CAS  PubMed  Google Scholar 

  5. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    CAS  PubMed  Google Scholar 

  6. White RB, Bierinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21

    PubMed  PubMed Central  Google Scholar 

  7. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80

    CAS  PubMed  Google Scholar 

  8. Keefe AC, Lawson JA, Flygare SD, Fox ZD, Colasanto MP, Mathew SJ, Yandell M, Kardon G (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087

    CAS  PubMed  Google Scholar 

  9. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  10. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    CAS  PubMed  Google Scholar 

  11. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grounds MD, Yablonka-Reuveni Z (1993) Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 3:210–256

    CAS  PubMed  Google Scholar 

  13. Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340:330–343

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shefer G, Yablonka-Reuveni Z (2008) Ins and outs of satellite cell myogenesis: the role of the ruling growth factors. In: Schiaffino S, Partridge T (eds) Skeletal muscle repair and regeneration, Advances in muscle research, vol 3. Springer, Dordrecht, Netherlands, pp 107–144

    Google Scholar 

  17. Morgan JE, Zammit PS (2010) Direct effects of the pathogenic mutation on satellite cell function in muscular dystrophy. Exp Cell Res 316:3100–3108

    CAS  PubMed  Google Scholar 

  18. Yablonka-Reuveni Z, Day K (2010) Skeletal muscle stem cells in the spotlight: the satellite cell. In: Cohen I, Gaudette G (eds) Regenerating the heart: stem cells and the cardiovascular system, Stem cell biology and regenerative medicine series. Humana Press, Springer, pp 173–200

    Google Scholar 

  19. Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yablonka-Reuveni Z (1995) Development and postnatal regulation of adult myoblasts. Microsc Res Tech 30:366–380

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58:941–955

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    CAS  PubMed  Google Scholar 

  23. Kawakami A, Kimura-Kawakami M, Nomura T, Fujisawa H (1997) Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development. Mech Dev 66:119–130

    CAS  PubMed  Google Scholar 

  24. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D (2010) Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS One 5:e13307

    PubMed  PubMed Central  Google Scholar 

  26. Allouh MZ, Yablonka-Reuveni Z, Rosser BW (2008) Pax7 reveals a greater frequency and concentration of satellite cells at the ends of growing skeletal muscle fibers. J Histochem Cytochem 56:77–87

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lindstrom M, Thornell LE (2009) New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 132:141–157

    PubMed  Google Scholar 

  28. Reimann J, Brimah K, Schroder R, Wernig A, Beauchamp JR, Partridge TA (2004) Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res 315:233–242

    PubMed  Google Scholar 

  29. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    CAS  PubMed  Google Scholar 

  30. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304:246–259

    CAS  PubMed  Google Scholar 

  32. Stuelsatz P, Shearer A, Li Y, Muir LA, Ieronimakis N, Shen QW, Kirillova I, Yablonka-Reuveni Z (2015) Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency. Dev Biol 397:31–44

    CAS  PubMed  Google Scholar 

  33. Shefer G, Rauner G, Stuelsatz P, Benayahu D, Yablonka-Reuveni Z (2013) Moderate-intensity treadmill running promotes expansion of the satellite cell pool in young and old mice. FEBS J 280:4063–4073

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yablonka-Reuveni Z, Danoviz ME, Phelps M, Stuelsatz P (2015) Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Front Aging Neurosci 7:85

    PubMed  PubMed Central  Google Scholar 

  35. Yablonka-Reuveni Z, Day K, Vine A, Shefer G (2008) Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci 86:E207–E216

    CAS  PubMed  Google Scholar 

  36. Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164:588–603

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Day K, Paterson B, Yablonka-Reuveni Z (2009) A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn 238:1001–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231:489–502

    CAS  PubMed  Google Scholar 

  40. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    CAS  PubMed  Google Scholar 

  41. Yablonka-Reuveni Z (2004) Isolation and culture of myogenic stem cells. In: Lanza R, Blau D, Melton D et al (eds) Handbook of Stem Cells—Vol 2: Adult and Fetal Stem Cells. Elsevier, San Diego

    Google Scholar 

  42. Danoviz ME, Yablonka-Reuveni Z (2012) Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol 798:21–52

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yablonka-Reuveni Z, Quinn LS, Nameroff M (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev Biol 119:252–259

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096

    CAS  PubMed  Google Scholar 

  45. Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z, Reyes M (2010) Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS One 5:e10920

    PubMed  PubMed Central  Google Scholar 

  46. Bekoff A, Betz W (1977) Properties of isolated adult rat muscle fibres maintained in tissue culture. J Physiol 271:537–547

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    CAS  PubMed  Google Scholar 

  48. Bischoff R (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21:S164–S172

    CAS  PubMed  Google Scholar 

  49. Yablonka-Reuveni Z, Rivera AJ (1997) Proliferative dynamics and the role of FGF2 during myogenesis of rat satellite cells on isolated fibers. Basic Appl Myol 7:189–202

    PubMed  PubMed Central  Google Scholar 

  50. Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 235:203–212

    CAS  PubMed  Google Scholar 

  51. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–779

    CAS  PubMed  Google Scholar 

  53. Rosenblatt JD, Parry DJ, Partridge TA (1996) Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation 60:39–45

    CAS  PubMed  Google Scholar 

  54. Stuelsatz P, Keire P, Almuly R, Yablonka-Reuveni Z (2012) A contemporary atlas of the mouse diaphragm: myogenicity, vascularity, and the Pax3 connection. J Histochem Cytochem 60:638–657

    PubMed  PubMed Central  Google Scholar 

  55. Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42

    CAS  PubMed  Google Scholar 

  56. Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469

    CAS  PubMed  Google Scholar 

  57. Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311–324

    CAS  PubMed  Google Scholar 

  58. Tajbakhsh S, Rocancourt D, Buckingham M (1996) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384:266–270

    CAS  PubMed  Google Scholar 

  59. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    CAS  PubMed  Google Scholar 

  60. Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129:383–396

    CAS  PubMed  Google Scholar 

  61. Chapman VM, Miller DR, Armstrong D, Caskey CT (1989) Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acad Sci U S A 86:1292–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Im WB, Phelps SF, Copen EH, Adams EG, Slightom JL, Chamberlain JS (1996) Differential expression of dystrophin isoforms in strains of mdx mice with different mutations. Hum Mol Genet 5:1149–1153

    CAS  PubMed  Google Scholar 

  63. Banks GB, Combs AC, Chamberlain JS (2010) Sequencing protocols to genotype mdx, mdx(4cv), and mdx(5cv) mice. Muscle Nerve 42:268–270

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu QL, Morris GE, Wilton SD, Ly T, Artem’yeva OV, Strong P, Partridge TA (2000) Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol 148:985–996

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Arpke RW, Darabi R, Mader TL, Zhang Y, Toyama A, Lonetree CL, Nash N, Lowe DA, Perlingeiro RC, Kyba M (2013) A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells 31:1611–1620

    CAS  PubMed  Google Scholar 

  66. Danko I, Chapman V, Wolff JA (1992) The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy. Pediatr Res 32:128–131

    CAS  PubMed  Google Scholar 

  67. Decrouy A, Renaud JM, Davis HL, Lunde JA, Dickson G, Jasmin BJ (1997) Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther 4:401–408

    CAS  PubMed  Google Scholar 

  68. Judge LM, Haraguchiln M, Chamberlain JS (2006) Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex. J Cell Sci 119:1537–1546

    CAS  PubMed  Google Scholar 

  69. Dias P, Parham DM, Shapiro DN, Tapscott SJ, Houghton PJ (1992) Monoclonal antibodies to the myogenic regulatory protein MyoD1: epitope mapping and diagnostic utility. Cancer Res 52:6431–6439

    CAS  PubMed  Google Scholar 

  70. Wright WE, Binder M, Funk W (1991) Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol 11:4104–4110

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wright WE, Dac-Korytko I, Farmer K (1996) Monoclonal antimyogenin antibodies define epitopes outside the bHLH domain where binding interferes with protein-protein and protein-DNA interactions. Dev Genet 19:131–138

    CAS  PubMed  Google Scholar 

  72. Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    CAS  PubMed  Google Scholar 

  73. Anderson JE, McIntosh LM, Moor AN, Yablonka-Reuveni Z (1998) Levels of MyoD protein expression following injury of mdx and normal limb muscle are modified by thyroid hormone. J Histochem Cytochem 46:59–67

    CAS  PubMed  Google Scholar 

  74. Gause KC, Homma MK, Licciardi KA, Seger R, Ahn NG, Peterson MJ, Krebs EG, Meier KE (1993) Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells. J Biol Chem 268:16124–16129

    CAS  PubMed  Google Scholar 

  75. Seger R, Seger D, Reszka AA, Munar ES, Eldar-Finkelman H, Dobrowolska G, Jensen AM, Campbell JS, Fischer EH, Krebs EG (1994) Overexpression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that MAPKK involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J Biol Chem 269:25699–25709

    CAS  PubMed  Google Scholar 

  76. Greene EC (1963) Anatomy of the rat. Hafner Publishing Company, New York, NY

    Google Scholar 

  77. Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z, Greenway S, Craven S, Scott E, Anderson JE (2003) C-Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51:1437–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671

    CAS  PubMed  Google Scholar 

  79. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM (2004) Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci 61:2510–2522

    CAS  PubMed  Google Scholar 

  80. Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    CAS  PubMed  Google Scholar 

  81. Kania G, Blyszczuk P, Czyz J, Navarrete-Santos A, Wobus AM (2003) Differentiation of mouse embryonic stem cells into pancreatic and hepatic cells. Methods Enzymol 365:287–303

    CAS  PubMed  Google Scholar 

  82. Vogel W, Grunebach F, Messam CA, Kanz L, Brugger W, Buhring HJ (2003) Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica 88:126–133

    PubMed  Google Scholar 

  83. Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167:935–944

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    CAS  PubMed  Google Scholar 

  86. Keire P, Shearer A, Shefer G, Yablonka-Reuveni Z (2013) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 946:431–468

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shefer G, Yablonka-Reuveni Z (2007) Reflections on lineage potential of skeletal muscle satellite cells: do they sometimes go MAD? Crit Rev Eukaryot Gene Expr 17:13–29

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Starkey JD, Yamamoto M, Yamamoto S, Goldhamer DJ (2011) Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates. J Histochem Cytochem 59:33–46

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bischoff R (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–147

    CAS  PubMed  Google Scholar 

  90. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cossu G, Tajbakhsh S (2007) Oriented cell divisions and muscle satellite cell heterogeneity. Cell 129:859–861

    CAS  PubMed  Google Scholar 

  92. Yablonka-Reuveni Z, Christ B, Benson JM (1998) Transitions in cell organization and in expression of contractile and extracellular matrix proteins during development of chicken aortic smooth muscle: evidence for a complex spatial and temporal differentiation program. Anat Embryol (Berl) 197:421–437

    CAS  PubMed  Google Scholar 

  93. Yablonka-Reuveni Z, Nameroff M (1990) Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle. Differentiation 45:21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yablonka-Reuveni Z, Schwartz SM, Christ B (1995) Development of chicken aortic smooth muscle: expression of cytoskeletal and basement membrane proteins defines two distinct cell phenotypes emerging from a common lineage. Cell Mol Biol Res 41:241–249

    CAS  PubMed  Google Scholar 

  95. Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS (2010) Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 337:29–41

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49

    CAS  PubMed  Google Scholar 

  97. Stuelsatz P, Yablonka-Reuveni Z (2016) Isolation of mouse periocular tissue for histological and immunostaining analyses of the extraocular muscles and their satellite cells. Methods Mol Biol 1460:101-127.

    Google Scholar 

  98. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193

    CAS  PubMed  Google Scholar 

  99. Yablonka-Reuveni Z, Seifert RA (1993) Proliferation of chicken myoblasts is regulated by specific isoforms of platelet-derived growth factor: evidence for differences between myoblasts from mid and late stages of embryogenesis. Dev Biol 156:307–318

    CAS  PubMed  Google Scholar 

  100. Yablonka-Reuveni Z (1995) Myogenesis in the chicken: the onset of differentiation of adult myoblasts is influenced by tissue factors. Basic Appl Myol 5:33–42

    PubMed  PubMed Central  Google Scholar 

  101. O’Neill MC, Stockdale FE (1972) A kinetic analysis of myogenesis in vitro. J Cell Biol 52:52–65

    PubMed  PubMed Central  Google Scholar 

  102. Gray, H. (1918) The muscles and fasciæ of the foot. In: Anatomy of the human body. Available via Bartleby.com. http://www.bartleby.com/107/131.html. Accessed 17 Nov 2016

  103. Gray, H. (1918) Fig. 443. In: Anatomy of the human body. Available via Bartleby.com. http://www.bartleby.com/107/illus443.html. Accessed 17 Nov 2016

  104. Gray, H. (1918) Fig. 437. In: Anatomy of the human body. Available via Bartleby.com. http://www.bartleby.com/107/illus437.html. Accessed 17 Nov 2016

  105. Gray, H. (1918) Fig. 441. In: Anatomy of the Human Body. Available via Bartleby.com. http://www.bartleby.com/107/illus441.html. Accessed 17 Nov 2016

  106. Gray, H. (1918) The muscles and fasciæ of the leg. In: Anatomy of the Human Body. Available via Bartleby.com. http://www.bartleby.com/107/129.html. Accessed 17 Nov 2016

  107. Shefer G, Yablonka-Reuveni Z (2005) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 290:281–304

    PubMed  PubMed Central  Google Scholar 

  108. Birbrair A, Wang ZM, Messi ML, Enikolopov GN, Delbono O (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS One 6:e16816

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The methods and results summarized in the current chapter reflect the culmination of continuous updates during many years of research. Our current research is supported by grants to Z.Y.R. from the National Institutes of Health (AG035377, NS090051, NS088804). Pascal Stuelsatz is supported by an AFM-telethon fellowship (#18574). The authors are additionally grateful to the granting agencies (MDA, AHA, USDA-NRI, NIH) that have funded this research in the past and to our former members of our laboratory (Antony Rivera, Gabi Shefer, Andrew Shearer, and Elena Danoviz) for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zipora Yablonka-Reuveni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Stuelsatz, P., Keire, P., Yablonka-Reuveni, Z. (2017). Isolation, Culture, and Immunostaining of Skeletal Muscle Myofibers from Wildtype and Nestin-GFP Mice as a Means to Analyze Satellite Cells. In: Perdiguero, E., Cornelison, D. (eds) Muscle Stem Cells. Methods in Molecular Biology, vol 1556. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6771-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6771-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-6769-8

  • Online ISBN: 978-1-4939-6771-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics