Advertisement

Primary Mouse Myoblast Purification using Magnetic Cell Separation

  • Marie Claude Sincennes
  • Yu Xin Wang
  • Michael A. RudnickiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1556)

Abstract

Primary myoblasts can be isolated from mouse muscle cell extracts and cultured in vitro. Muscle cells are usually dissociated manually by mincing with razor blades or scissors in a collagenase/dispase solution. Primary myoblasts are then gradually enriched by pre-plating on collagen-coated plates, based on the observation that mouse fibroblasts attach quickly to collagen-coated plates, and are less adherent. Here, we describe an automated muscle dissociation protocol. We also propose an alternative to pre-plating using magnetic bead separation of primary myoblasts, which improve myoblast purity by minimizing fibroblast contamination.

Key words

Primary myoblasts Satellite cells Magnetic separation Fibroblast contamination Magnetic-activated cell sorting Muscle cells Pre-plating 

Notes

Acknowledgments

Y.X.W. is supported by fellowships from QEII-GSST and the Canadian Institutes of Health Research. M.A.R. holds the Canada Research Chair in Molecular Genetics. These studies were carried out with support of grants to M.A.R. from the US National Institutes for Health [R01AR044031], the Canadian Institutes for Health Research [MOP-12080, MOP-81288], E-Rare-2: Canadian Institutes of Health Research/Muscular Dystrophy Canada [ERA-132935], the Muscular Dystrophy Association, and the Stem Cell Network.

References

  1. 1.
    Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14(12):1062–1072. doi: 10.1038/embor.2013.182 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chang NC, Rudnicki MA (2014) Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol 107:161–181. doi: 10.1016/b978-0-12-416022-4.00006-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125(6):1275–1287CrossRefPubMedGoogle Scholar
  4. 4.
    Springer ML, Rando TA, Blau HM (2002) Gene delivery to muscle. Curr Protoc Hum Genet Chapter 13:Unit13.4. doi:10.1002/0471142905.hg1304s31Google Scholar
  5. 5.
    Pastoret C, Sebille A (1995) mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 129(2):97–105CrossRefPubMedGoogle Scholar
  6. 6.
    Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536–539. doi: 10.1038/352536a0 CrossRefPubMedGoogle Scholar
  7. 7.
    Trensz F, Haroun S, Cloutier A, Richter MV, Grenier G (2010) A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway. Am J Physiol Cell Physiol 299(5):C939–C947. doi: 10.1152/ajpcell.00253.2010 CrossRefPubMedGoogle Scholar
  8. 8.
    Blanco-Bose WE, Yao CC, Kramer RH, Blau HM (2001) Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 265(2):212–220. doi: 10.1006/excr.2001.5191 CrossRefPubMedGoogle Scholar
  9. 9.
    Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199(4):326–337. doi: 10.1002/aja.1001990407 CrossRefPubMedGoogle Scholar
  10. 10.
    Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, Usas A, Gates C, Robbins P, Wernig A, Huard J (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150(5):1085–1100CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosen GD, Sanes JR, LaChance R, Cunningham JM, Roman J, Dean DC (1992) Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69(7):1107–1119CrossRefPubMedGoogle Scholar
  13. 13.
    Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119(4):543–554. doi: 10.1016/j.cell.2004.10.021 CrossRefPubMedGoogle Scholar
  14. 14.
    Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296(2):245–255. doi: 10.1016/j.yexcr.2004.02.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Uezumi A, Ojima K, Fukada S, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S (2006) Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 341(3):864–873. doi: 10.1016/j.bbrc.2006.01.037 CrossRefPubMedGoogle Scholar
  16. 16.
    Kina T, Ikuta K, Takayama E, Wada K, Majumdar AS, Weissman IL, Katsura Y (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109(2):280–287CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Marie Claude Sincennes
    • 1
    • 2
  • Yu Xin Wang
    • 1
    • 2
  • Michael A. Rudnicki
    • 1
    • 2
    Email author
  1. 1.Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine ProgramOttawaCanada
  2. 2.Faculty of Medicine, Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada

Personalised recommendations