Advertisement

Monitoring Autophagy in Muscle Stem Cells

  • Laura García-Prat
  • Pura Muñoz-Cánoves
  • Marta Martínez-VicenteEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1556)

Abstract

Autophagy is critical not only for the cell’s adaptive response to starvation but also for cellular homeostasis, by acting as quality-control machinery for cytoplasmic components. This basal autophagic activity is particularly needed in postmitotic cells for survival maintenance. Recently, basal autophagic activity was reported in skeletal muscle stem cells (satellite cells) in their dormant quiescent state. Satellite cells are responsible for growth as well as for regeneration of muscle in response to stresses such as injury or disease. In the absence of stress, quiescence is the stem cell state of these cells throughout life, although which mechanisms maintain long-life quiescence remains largely unknown. Our recent findings showed that autophagy is necessary for quiescence maintenance in satellite cells and for retention of their regenerative functions. Importantly, damaged organelles and proteins accumulated in these cells with aging and this was connected to age-associated defective autophagy. Refueling of autophagy through genetic and pharmacological strategies restored aged satellite cell functions, and these finding have biomedical implications. In this chapter, we describe different experimental strategies to evaluate autophagic activity in satellite cells in resting muscle of mice. They should facilitate our competence to investigate stem cell functions both during tissue homeostasis as in pathological conditions.

Key words

Stem cell Satellite cell Skeletal muscle Autophagy Quiescence Aging 

Notes

Acknowledgments

Work in the authors’ laboratories has been supported by: MINECO, Spain SAF2012-38547, AFM, E-Rare/Eranet, Fundació Marató-TV3, MDA, EU-FP7 (Myoage, Optistem, and Endostem), and DuchennePP-NL, to PM-C; and ISCIII-FEDER, Spain (FIS-PS09/01267, FIS-PI13/02512, CP09/00184, PI14/01529) and CIBERNED to MM-V. L.G.-P. was supported by a Predoctoral Fellowship from Programa de Formación de Personal Investigador (Spain).

References

  1. 1.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741CrossRefPubMedGoogle Scholar
  2. 2.
    Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2):55–72CrossRefGoogle Scholar
  3. 3.
    Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477CrossRefPubMedGoogle Scholar
  4. 4.
    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Klionsky DJ (2005) Autophagy. Curr Biol 15(8):R282–R283CrossRefPubMedGoogle Scholar
  6. 6.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40CrossRefPubMedGoogle Scholar
  7. 7.
    Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221(2):117–124CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dunn WA Jr et al (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1(2):75–83CrossRefPubMedGoogle Scholar
  11. 11.
    Bernales S, Schuck S, Walter P (2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3(3):285–287CrossRefPubMedGoogle Scholar
  12. 12.
    Kraft C et al (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10(5):602–610CrossRefPubMedGoogle Scholar
  13. 13.
    Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bauckman KA, Owusu-Boaitey N, Mysorekar IU (2015) Selective autophagy: xenophagy. Methods 75:120–127CrossRefPubMedGoogle Scholar
  15. 15.
    Lamark T, Johansen T (2012) Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012:736905CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Komatsu M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163CrossRefPubMedGoogle Scholar
  17. 17.
    Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145CrossRefPubMedGoogle Scholar
  18. 18.
    Lamark T et al (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8(13):1986–1990CrossRefPubMedGoogle Scholar
  19. 19.
    Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells 15(9):923–933CrossRefPubMedGoogle Scholar
  20. 20.
    Ichimura Y, Komatsu M (2010) Selective degradation of p62 by autophagy. Semin Immunopathol 32(4):431–436CrossRefPubMedGoogle Scholar
  21. 21.
    Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889CrossRefPubMedGoogle Scholar
  22. 22.
    Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884CrossRefPubMedGoogle Scholar
  23. 23.
    García-Prat L et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42CrossRefPubMedGoogle Scholar
  24. 24.
    Tang AH, Rando TA. (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33(23):2782–2797.Google Scholar
  25. 25.
    Warr MR et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494(7437):323–327CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Itoh N, Kimura T (2007) Cytokine-induced metallothionein expression and modulation of cytokine expression by metallothionein. Yakugaku Zasshi 127(4):685–694CrossRefPubMedGoogle Scholar
  27. 27.
    Mauro A (1961) Satellite cells of skeletal fibers. JBiophysBiochemCytol 9:493–495Google Scholar
  28. 28.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18CrossRefPubMedGoogle Scholar
  30. 30.
    Komatsu M et al (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14(5):887–894PubMedGoogle Scholar
  31. 31.
    Komatsu M, Kageyama S, Ichimura Y (2012) p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66(6):457–462CrossRefPubMedGoogle Scholar
  32. 32.
    Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232CrossRefPubMedGoogle Scholar
  33. 33.
    Warnes G (2015) Flow cytometric assays for the study of autophagy. Methods 82:21–28CrossRefPubMedGoogle Scholar
  34. 34.
    Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460CrossRefPubMedGoogle Scholar
  35. 35.
    Breitkreutz BJ et al (2001) AFM 4.0: a toolbox for DNA microarray analysis. Genome Biol 2(8):SOFTWARE0001CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefPubMedGoogle Scholar
  37. 37.
    Hulsen T, de Vlieg J, Alkema W (2008) BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9:488CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang YP et al (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34(5):625–635CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bollon AP et al (1988) Human cytokines, tumor necrosis factor, and interferons: gene cloning, animal studies, and clinical trials. J Cell Biochem 36:353–367CrossRefPubMedGoogle Scholar
  40. 40.
    Buttner S et al (2014) Spermidine protects against alpha-synuclein neurotoxicity. Cell Cycle 13(24):3903–3908CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Komatsu M et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Crews L et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5(2):e9313CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Spencer B et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29(43):13578–13588CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nascimento-Ferreira I et al (2011) Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134(Pt 5):1400–1415CrossRefPubMedGoogle Scholar
  45. 45.
    Mizushima N et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mizushima N (2009) Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 452:13–23CrossRefPubMedGoogle Scholar
  47. 47.
    Kuma A, Mizushima N (2008) Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 4(1):61–62CrossRefPubMedGoogle Scholar
  48. 48.
    Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328CrossRefPubMedGoogle Scholar
  49. 49.
    Keller C et al (2004) Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18(21):2608–2613CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nishijo K et al (2009) Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J 23(8):2681–2690CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Laura García-Prat
    • 1
    • 3
  • Pura Muñoz-Cánoves
    • 1
    • 2
    • 3
  • Marta Martínez-Vicente
    • 4
    Email author
  1. 1.Cell Biology Group, Department of Experimental and Health SciencesPompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Tissue Regeneration Laboratory. Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
  4. 4.Neurodegenerative Diseases Research GroupVall d’Hebron Research Institute-CIBERNEDBarcelonaSpain

Personalised recommendations