Simultaneous Measurement of Mitochondrial and Glycolytic Activity in Quiescent Muscle Stem Cells

  • James G. RyallEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1556)


Cellular metabolism has recently been identified as an important regulator of cell identity, with several adult stem cell populations having been observed to undergo a shift in metabolism during important changes in cell state, such as during the shift from quiescence to proliferation. In this chapter, a method to characterize the metabolism of quiescent skeletal muscle stem cells is presented. This technique will allow for the comparison of quiescent muscle stem cells isolated from two or more different mouse models.

Key words

Metabolism Satellite cells Glycolysis Oxidative phosphorylation Mitochondria 


  1. 1.
    Koopman R, Ly CH, Ryall JG (2014) A metabolic link to skeletal muscle wasting and regeneration. Front Physiol 5:32CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340CrossRefPubMedGoogle Scholar
  4. 4.
    Shea KL et al (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6(2):117–129CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fukada S et al (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459CrossRefPubMedGoogle Scholar
  6. 6.
    Fukada S et al (2011) Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development 138(21):4609–4619CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ryall JG et al (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16(2):171–183CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shyh-Chang N et al (2013) Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155(4):778–792CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Folmes CD, Terzic A (2014) Metabolic determinants of embryonic development and stem cell fate. Reprod Fertil Dev 27(1):82–88CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shyh-Chang N, Daley GQ (2015) Metabolic switches linked to pluripotency and embryonic stem cell differentiation. Cell Metab 21(3):349–350CrossRefPubMedGoogle Scholar
  11. 11.
    Cheung TH et al (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482(7386):524–528CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu L et al (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4(1):189–204CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pallafacchina G et al (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4(2):77–91CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13(5–6):268–274CrossRefPubMedGoogle Scholar
  15. 15.
    Nicholls DG et al (2010) Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp 46Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Stem Cell Metabolism & Regenerative Medicine Group, Basic & Clinical Myology Laboratory, Department of PhysiologyThe University of MelbourneParkvilleAustralia

Personalised recommendations