Advertisement

Transplantation of Skeletal Muscle Stem Cells

  • Monica N. Hall
  • John K. Hall
  • Adam B. Cadwallader
  • Bradley T. Pawlikowski
  • Jason D. Doles
  • Tiffany L. Elston
  • Bradley B. OlwinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1556)

Abstract

Transplanting adult stem cells provides a stringent test for self-renewal and the assessment of comparative engraftment in competitive transplant assays. Transplantation of satellite cells into mammalian skeletal muscle provided the first critical evidence that satellite cells function as adult muscle stem cells. Transplantation of a single satellite cell confirmed and extended this hypothesis, providing proof that the satellite cell is a bona fide adult skeletal muscle stem cell as reported by Sacco et al. (Nature 456(7221):502–506). Satellite cell transplantation has been further leveraged to identify culture conditions that maintain engraftment and to identify self-renewal deficits in satellite cells from aged mice. Conversion of iPSCs (induced pluripotent stem cells) to a satellite cell-like state, followed by transplantation, demonstrated that these cells possess adult muscle stem cell properties as reported by Darabi et al. (Stem Cell Rev Rep 7(4):948–957) and Mizuno et al. (FASEB J 24(7):2245–2253). Thus, transplantation strategies involving either satellite cells derived from adult muscles or derived from iPSCs may eventually be exploited as a therapy for treating patients with diseased or failing skeletal muscle. Here, we describe methods for isolating dispersed adult mouse satellite cells and satellite cells on intact myofibers for transplantation into recipient mice to study muscle stem cell function and behavior following engraftment.

Key words

Skeletal muscle Satellite cell Muscle myofiber Adult muscle stem cell Stem cell transplantation 

Notes

Acknowledgment

This work was supported by NIH grants R01AG040074, R01AG040074 and an Ellison Medical Senior Scholar Award to BBO.

References

  1. 1.
    Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20(13):1692–1708. doi: 10.1101/gad.1419406 CrossRefPubMedGoogle Scholar
  2. 2.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91(2):534–551CrossRefPubMedGoogle Scholar
  4. 4.
    Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122. doi: 10.1016/j.cell.2005.05.010
  5. 5.
    Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC (1982) Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 57(2–3):319–331CrossRefPubMedGoogle Scholar
  6. 6.
    Watt DJ, Morgan JE, Partridge TA (1984) Use of mononuclear precursor cells to insert allogeneic genes into growing mouse muscles. Muscle Nerve 7(9):741–750. doi: 10.1002/mus.880070908 CrossRefPubMedGoogle Scholar
  7. 7.
    Morgan JE, Watt DJ, Sloper JC, Partridge TA (1988) Partial correction of an inherited biochemical defect of skeletal muscle by grafts of normal muscle precursor cells. J Neurol Sci 86(2–3):137–147CrossRefPubMedGoogle Scholar
  8. 8.
    Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144(6):1113–1122CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067. doi: 10.1126/science.1114758 CrossRefPubMedGoogle Scholar
  10. 10.
    Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239(1):79–94. doi: 10.1006/dbio.2001.0416 CrossRefPubMedGoogle Scholar
  11. 11.
    Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4(3):217–225. doi: 10.1016/j.stem.2009.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hall JK, Banks GB, Chamberlain JS, Olwin BB (2010) Prevention of muscle aging by myofiber-associated satellite cell transplantation. Sci Transl Med 2(57):57ra83. doi: 10.1126/scitranslmed.3001081 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Marg A, Escobar H, Gloy S, Kufeld M, Zacher J, Spuler A, Birchmeier C, Izsvák Z, Spuler S (2014) Human satellite cells have regenerative capacity and are genetically manipulable. J Clin Invest 124(10):4257–4265. doi: 10.1172/JCI63992 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Sci Signal 329(5995):1078Google Scholar
  15. 15.
    Gussoni E, Wang Y, Fraefel C, Miller RG, Blau HM, Geller AI, Kunkel LM (1996) A method to codetect introduced genes and their products in gene therapy protocols. Nat Biotechnol 14(8):1012–1016. doi: 10.1038/nbt0896-1012 CrossRefPubMedGoogle Scholar
  16. 16.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786CrossRefPubMedGoogle Scholar
  17. 17.
    Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Monica N. Hall
    • 1
  • John K. Hall
    • 1
  • Adam B. Cadwallader
    • 1
  • Bradley T. Pawlikowski
    • 1
  • Jason D. Doles
    • 1
  • Tiffany L. Elston
    • 1
  • Bradley B. Olwin
    • 1
    Email author
  1. 1.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations