Skip to main content

Assessment of MiRNA Regulation of Endothelial Progenitor Cell Mediated Angiogenesis

  • Protocol
  • First Online:
Adult Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1553))

Abstract

Organ outgrowth, embryonic development, wound healing, and many such processes require the process of angiogenesis, whereby new blood vessels are developed from the preexisting vessels. microRNAs (miRs) are 18–24 nucleotide-containing endogenous RNAs that, via a posttranscriptional mechanism, exert substantial gene regulatory effects. It was discovered by recent advances that, through direct targeting of certain critical secretory factors and transcription factors, miRs exert potent angiogenic control in a cell autonomous and non-cell autonomous manner. This chapter comprehensively summarizes step-by-step protocols for the (1) transfection of miRNA in EPCs (2) advantages and limitations of the principal tubule formation assays in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936. doi:10.1038/nature04478

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. doi:10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  4. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945. doi:10.1038/nature04479

    Article  CAS  PubMed  Google Scholar 

  5. Bouis D, Kusumanto Y, Meijer C, Mulder NH, Hospers GA (2006) A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 53:89–103. doi:10.1016/j.phrs.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  6. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    Article  CAS  PubMed  Google Scholar 

  7. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514. doi:10.1038/nrc2868

    Article  CAS  PubMed  Google Scholar 

  8. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annual Rev Cell Dev Biol 27:563–584. doi:10.1146/annurev-cellbio-092910-154002

    Article  CAS  Google Scholar 

  9. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049. doi:10.1056/NEJMra0706596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186. doi:10.1056/nejm197111182852108

    Article  CAS  PubMed  Google Scholar 

  11. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598

    Article  CAS  PubMed  Google Scholar 

  12. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12:267–274. doi:10.1007/s10456-009-9146-4

    Article  PubMed  Google Scholar 

  13. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5:628–635. doi:10.1038/nprot.2010.6

    Article  CAS  PubMed  Google Scholar 

  14. Joladarashi D, Thandavarayan RA, Babu SS, Krishnamurthy P (2014) Small engine, big power: micro-RNAs as regulators of cardiac diseases and regeneration. Int J Mol Sci 15:15891–15911

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Institutes of Health grants 1R01HL116729 to Dr. Krishnamurthy and American Heart Association grant-in-aid GRNT 25860041 to Dr. Krishnamurthy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Joladarashi, D., Krishnamurthy, P. (2017). Assessment of MiRNA Regulation of Endothelial Progenitor Cell Mediated Angiogenesis. In: Di Nardo, P., Dhingra, S., Singla, D. (eds) Adult Stem Cells. Methods in Molecular Biology, vol 1553. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6756-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6756-8_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6754-4

  • Online ISBN: 978-1-4939-6756-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics