Skip to main content

Optimal Environmental Stiffness for Stem Cell Mediated Ischemic Myocardium Repair

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1553))

Abstract

Cardiovascular diseases related to myocardial infarction (MI) contribute significantly to morbidity and mortality worldwide. The loss of cardiomyocytes during MI is a key factor in the impairment of cardiac-pump functions. Employing cell transplantation has shown great potential as a therapeutic approach in regenerating ischemic myocardium. Several studies have suggested that the therapeutic effects of stem cells vary based on the timing of cell administration. It has been clearly established that the myocardium post-infarction experiences a time-dependent stiffness change, and many studies have highlighted the importance of stiffness (elasticity) of microenvironment on modulating the fate and function of stem cells. Therefore, this chapter outlines our studies and other experiments designed to establish the optimal stiffness of microenvironment that maximizes benefits for maintaining cell survival, promoting phenotypic plasticity, and improving functional specification of the engrafted stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tang YL et al (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–236 discussion 236-7

    Article  PubMed  Google Scholar 

  2. Feygin J et al (2007) Functional and bioenergetic modulations in the infarct border zone following autologous mesenchymal stem cell transplantation. Am J Physiol Heart Circ Physiol 293(3):H1772–H1780

    Article  CAS  PubMed  Google Scholar 

  3. Kinnaird T et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    Article  CAS  PubMed  Google Scholar 

  4. Berry MF et al (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203

    Article  CAS  PubMed  Google Scholar 

  5. Schachinger V et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  CAS  PubMed  Google Scholar 

  6. Meyer GP et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10):1287–1294

    Article  PubMed  Google Scholar 

  7. Wollert KC et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  8. Janssens S et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  PubMed  Google Scholar 

  9. Duran JM et al (2013) Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 113(5):539–552

    Article  CAS  PubMed  Google Scholar 

  10. Thal MA et al (2012) Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair. Circ Res 111(2):180–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatzistergos KE et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107(7):913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartunek J et al (2006) Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S52–S56

    Article  PubMed  Google Scholar 

  13. Hu X et al (2007) Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 31(3):438–443

    Article  PubMed  Google Scholar 

  14. Zhang S et al (2009) Impact of timing on efficacy and safetyof intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol 32(8):458–466

    Article  PubMed  Google Scholar 

  15. Zhang S et al (2011) Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells. J Cell Mol Med 15(10):2245–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Das RK, Zouani OF (2014) A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials 35(20):5278–5293

    Article  CAS  PubMed  Google Scholar 

  17. Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204(1):198–209

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert PM et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guilak F et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen JH et al (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13(10):979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raya TE et al (1988) Serial changes in left ventricular relaxation and chamber stiffness after large myocardial infarction in rats. Circulation 77(6):1424–1431

    Article  CAS  PubMed  Google Scholar 

  23. Chaturvedi RR et al (2010) Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121(8):979–988

    Article  PubMed  Google Scholar 

  24. Ma Y, Yabluchanskiy A, Lindsey ML (2013) Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair 6(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma Y, Halade GV, Lindsey ML (2012) Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res 5(6):848–857

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma Y et al (2013) Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Circ Res 112(4):675–688

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S et al (2009) A role of myocardial stiffness in cell-based cardiac repair: a hypothesis. J Cell Mol Med 13(4):660–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoover-Plow J, Gong Y (2012) Challenges for heart disease stem cell therapy. Vasc Health Risk Manag 8:99–113

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barbash IM et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108(7):863–868

    Article  PubMed  Google Scholar 

  30. Hofmann M et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Article  PubMed  Google Scholar 

  31. Wollert KC, Drexler H (2005) Clinical applications of stem cells for the heart. Circ Res 96(2):151–163

    Article  CAS  PubMed  Google Scholar 

  32. Qian H et al (2007) Intracoronary delivery of autologous bone marrow mononuclear cells radiolabeled by 18F-fluoro-deoxy-glucose: tissue distribution and impact on post-infarct swine hearts. J Cell Biochem 102(1):64–74

    Article  CAS  PubMed  Google Scholar 

  33. Martens TP et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant 18(3):297–304

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang M et al (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921

    Article  CAS  PubMed  Google Scholar 

  35. Toma C et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  PubMed  Google Scholar 

  36. Hou D et al (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(9 Suppl):I150–I156

    PubMed  Google Scholar 

  37. Kong HJ, Boontheekul T, Mooney DJ (2006) Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype. Proc Natl Acad Sci U S A 103(49):18534–18539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  39. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32(26):5979–5993

    Article  CAS  PubMed  Google Scholar 

  40. Navaro Y et al (2015) Matrix stiffness determines the fate of nucleus pulposus-derived stem cells. Biomaterials 49:68–76

    Article  CAS  PubMed  Google Scholar 

  41. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  43. Walsh S et al (2010) Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86(3):365–373

    Article  CAS  PubMed  Google Scholar 

  44. Jacot JG, Martin JC, Hunt DL (2010) Mechanobiology of cardiomyocyte development. J Biomech 43(1):93–98

    Article  PubMed  Google Scholar 

  45. Shkumatov A, Baek K, Kong H (2014) Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies. PLoS One 9(4):e94764

    Article  PubMed  PubMed Central  Google Scholar 

  46. Engler AJ et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(Pt 22):3794–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribeiro AJ et al (2015) Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A 112(41):12705–12710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouten CV et al (2011) Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 63(4–5):221–241

    Article  CAS  PubMed  Google Scholar 

  50. Lee KM et al (2015) Natural cardiac extracellular matrix sheet as a biomaterial for cardiomyocyte transplantation. Transplant Proc 47(3):751–756

    Article  CAS  PubMed  Google Scholar 

  51. Robertson MJ et al (2014) Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One 9(2):e90406

    Article  PubMed  PubMed Central  Google Scholar 

  52. Singelyn JM et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59(8):751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pati F et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887

    Article  CAS  PubMed  Google Scholar 

  55. Khetan S et al (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12(5):458–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huebsch N et al (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Exon JH (2006) A review of the toxicology of acrylamide. J Toxicol Environ Health B Crit Rev 9(5):397–412

    Article  CAS  PubMed  Google Scholar 

  58. Darnell MC et al (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33):8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christman KL et al (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44(3):654–660

    Article  CAS  PubMed  Google Scholar 

  60. Bearzi C et al (2014) PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell Death Dis 5:e1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Atluri P et al (2014) Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. J Thorac Cardiovasc Surg 148(3):1090–1097 discussion 1097-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Collins CA et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301

    Article  CAS  PubMed  Google Scholar 

  63. Wang T et al (2009) Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater 5(8):2939–2944

    Article  CAS  PubMed  Google Scholar 

  64. Lee S et al (2015) Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cell-derived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes. Biomaterials 63:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gussoni E et al (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356(6368):435–438

    Article  CAS  PubMed  Google Scholar 

  66. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295(4):C1037–C1044

    Article  CAS  PubMed  Google Scholar 

  67. Pelham RJ Jr (1997) and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Beningo KA, Lo CM, Wang YL (2002) Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions. Methods Cell Biol 69:325–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants HL105176 and HL114654 (M. Xu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meifeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, H., Paul, C., Xu, M. (2017). Optimal Environmental Stiffness for Stem Cell Mediated Ischemic Myocardium Repair. In: Di Nardo, P., Dhingra, S., Singla, D. (eds) Adult Stem Cells. Methods in Molecular Biology, vol 1553. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6756-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6756-8_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6754-4

  • Online ISBN: 978-1-4939-6756-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics