Skip to main content

Modeling Movement Primitives with Hidden Markov Models for Robotic and Biomedical Applications

  • Protocol
  • First Online:
Hidden Markov Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1552))

Abstract

Movement primitives are elementary motion units and can be combined sequentially or simultaneously to compose more complex movement sequences. A movement primitive timeseries consist of a sequence of motion phases. This progression through a set of motion phases can be modeled by Hidden Markov Models (HMMs). HMMs are stochastic processes that model time series data as the evolution of a hidden state variable through a discrete set of possible values, where each state value is associated with an observation (emission) probability. Each motion phase is represented by one of the hidden states and the sequential order by their transition probabilities. The observations of the MP-HMM are the sensor measurements of the human movement, for example, motion capture or inertial measurements. The emission probabilities are modeled as Gaussians. In this chapter, the MP-HMM modeling framework is described and applications to motion recognition and motion performance assessment are discussed. The selected applications include parametric MP-HMMs for explicitly modeling variability in movement performance and the comparison of MP-HMMs based on the loglikelihood, the Kullback–Leibler divergence, the extended HMM-based F-statistic, and gait-specific reference-based measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitra S, Acharya T (2007) Gesture recognition: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 37(3):311–324

    Article  Google Scholar 

  2. Wilson AD, Bobick AF (1999) Parametric hidden markov models for gesture recognition. IEEE Trans Pattern Anal Mach Intell 21(9):884–900

    Article  Google Scholar 

  3. Karg M, Kuehnlenz K, Buss M (2010) Recognition of affect based on gait patterns. IEEE Trans Syst Man Cybern B Cybern 40(4):1050–1061

    Article  PubMed  Google Scholar 

  4. Karg M, Samadani A, Gorbet R, Kuehnlenz K, Hoey J, Kulic D (2013) Body movements for affective expression: a survey of automatic recognition and generation. IEEE Trans Affect Comput 4(4):341–359

    Article  Google Scholar 

  5. Kleinsmith A, Bianchi-Berthouze N (2013) Affective body expression perception and recognition: a survey. IEEE Trans Affect Comput 4(1):15–33

    Article  Google Scholar 

  6. Lee Y, Wampler K, Bernstein G, Popovic J, Popovic Z (2014) Motion fields for interactive character locomtion. Commun ACM 57(6):101–108

    Article  Google Scholar 

  7. Boulgoris N, Hatzinakos D, Plataniotis K (2005) Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process Mag 22(6):78–90

    Article  Google Scholar 

  8. Sarkar S, Phillips P, Liu Z, Vega I, Grother P, Bowyer K (2005) The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27(2):162–177

    Article  PubMed  Google Scholar 

  9. Kulić D, Takano W, Nakamura Y (2008) Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains. Int J Rob Res 27(7):761–784

    Article  Google Scholar 

  10. Kruger V, Herzog D, Baby S, Ude A, Kragic D (2010) Learning actions from observations. IEEE Robot Autom Mag 17(2):30–43

    Article  Google Scholar 

  11. Karg M, Venture G, Hoey J, Kulic D (2014) Human movement analysis as a measure for fatigue: a hidden markov-based approach. IEEE Trans Neural Syst Rehabil Eng 22(3):470–481

    Article  PubMed  Google Scholar 

  12. Karg M, Seiberl W, Kreuzpointner F, Haas JP, Kulić D (2015) Clinical gait analysis: comparing explicit state duration HMMs using a reference-based index. IEEE Trans Neural Syst Rehabil Eng 23(2):1812–1826

    Article  Google Scholar 

  13. Houmanfar R, Karg M, Kulić D (2016) Movement analysis of rehabilitation exercises: distance metrics for measuring patient progress. IEEE Syst J 10(3):1014–1025

    Article  Google Scholar 

  14. Simon S (2004) Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems. J Biomech 37(12):1869–1880

    Article  PubMed  Google Scholar 

  15. Flash T, Hochner B (2005) Motor primitves in vertebrates and invertebrates. Curr Opin Neurobiol 15(6):660–666

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Hu W, Tan T (2003) Recent developments in human motion analysis. Pattern Recogn 36(3):585–601

    Article  Google Scholar 

  17. Poppe R (2007) Vision-based human motion analysis: an overview. Comput Vis Image Underst 108(1–2):4–18

    Article  Google Scholar 

  18. Moeslund T, Hilton A, Krueger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104(1–2):90–126

    Article  Google Scholar 

  19. Chau T (2001) A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. Gait Posture 13(1):49–66

    Article  CAS  PubMed  Google Scholar 

  20. Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  21. Plamondon R, Srihari S (2000) On-line and off-line handwriting recognition: a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 22(1):63–84

    Article  Google Scholar 

  22. Wu J, Xie J (2010) Hidden Markov model and its applications in motif findings. Statistical methods in molecular biology. Humana Press, New York, pp 405–416

    Google Scholar 

  23. Zheng Y, Ding X, Poon C, Lo B, Zhang H, Zhou X, Yang G, Zhao N, Zhang Y (2014) Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng 61(5):1538–1554

    Article  PubMed  Google Scholar 

  24. Kale A, Sundaresan A, Rajagopalan AN, Cuntoor NP, Roy-Chowdhury AK, Kruger V, Chellappa R (2004) Identification of humans using gait. IEEE Trans Image Process 13(9):1163–1173

    Article  PubMed  Google Scholar 

  25. Brigante C, Basile A, Faulisi A, Sessa S (2011) Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans Ind Electron 58(8):3234–3241

    Article  Google Scholar 

  26. Lin J, Kulić D (2012) Human pose recovery using wireless inertial measurement units. Physiol Meas 33:2099–2115

    Article  PubMed  Google Scholar 

  27. Winter D (1990) Biomechanics and motor control of human movement. John Wiley & Sons, NJ

    Google Scholar 

  28. Lin J, Kulić D (2014) On-line segmentation of human motion for automated rehabilitation exercise analysis. IEEE Trans Neural Syst Rehabil Eng 22:168–180

    Article  PubMed  Google Scholar 

  29. Sanmohan B, Krueger V (2009) Primitive based action representation and recognition. Image Anal LNCS 5575:31–40

    Article  Google Scholar 

  30. Bishop C (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  31. Karg M, Seiberl W, Hoey J, Kulic D (2013) Human movement analysis: extension of the F-statistic for time series data using HMM. In: IEEE int. conf. on systems, man and cyberbetics

    Google Scholar 

  32. Karg ME (2012) Pattern recognition algorithms for gait analysis with application to affective computing. Doctoral dissertation, Technische Universität München, München

    Google Scholar 

  33. Perry JBJ (2010) Gait analysis: normal and pathological function. SLACK Incorporated

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Karg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Karg, M., Kulić, D. (2017). Modeling Movement Primitives with Hidden Markov Models for Robotic and Biomedical Applications. In: Westhead, D., Vijayabaskar, M. (eds) Hidden Markov Models. Methods in Molecular Biology, vol 1552. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6753-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6753-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6751-3

  • Online ISBN: 978-1-4939-6753-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics