Skip to main content

Haplotyping a Non-meiotic Diploid Fungal Pathogen Using Induced Aneuploidies and SNP/CGH Microarray Analysis

  • Protocol
  • First Online:
Haplotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1551))

Abstract

The generation of haplotype information has recently become very attractive due to its utility for identifying mutations associated with human disease and for the development of personalized medicine. Haplotype information also is crucial for studying recombination mechanisms and genetic diversity, and for analyzing allele-specific gene expression. Classic haplotyping methods require the analysis of hundreds of meiotic progeny. To facilitate haplotyping in the non-meiotic human fungal pathogen Candida albicans, we exploited trisomic heterozygous chromosomes generated via the UAU1 selection strategy. Using this system, we obtained phasing information from allelic biases, detected by SNP/CGH microarray analysis. This strategy has the potential to be applicable to other diploid, asexual Candida species that are important causes of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu J (2006) Extracting haplotypes from diploid organisms. Curr Issues Mol Biol 8:113–122

    CAS  PubMed  Google Scholar 

  2. Glusman G, Cox H, Roach J (2014) Whole-genome haplotyping approaches and genomic medicine. Genome Med 6(9):73

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bennett RJ, Forche A, Berman J (2015) Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 4(10), pii:a019604

    Google Scholar 

  4. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T et al (2011) Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio 2, e00129-11

    Google Scholar 

  5. Forche A, Magee PT, Selmecki A, Berman J, May G (2009) Evolution in Candida albicans populations during single passage through a mouse host. Genetics 182:799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bouchonville K, Forche A, Tang KE, Selmecki A, Berman J (2009) Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukaryot Cell 8:1554–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Selmecki AM, Gerami-Nejad M, Paulsen C, Forche A, Berman J (2008) An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol 68:624–641

    Article  CAS  PubMed  Google Scholar 

  8. Gerstein AC, Berman J (2015) Shift and adapt: the costs and benefits of karyotype variations. Curr Opin Microbiol 26:130–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Legrand M, Forche A, Selmecki A, Chan C, Kirkpatrick D, Berman J (2008) Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies. PLoS Genet 4:e1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Forche A, Alby K, Schaefer D, Johnson A, Berman J, Bennett R (2008) The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6:e110

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cowen LE, Sanglard D, Calabrese D, Sirjusingh C, Anderson JB, Kohn LM (2000) Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol 182:1515–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abbey D, Hickman M, Gresham D, Berman J (2011) High-resolution SNP/CGH microarrays reveal the accumulation of loss of heterozygosity in commonly used Candida albicans strains. G3 (Bethesda) 1:523–530

    Article  CAS  Google Scholar 

  13. Muzzey D, Schwartz K, Weissman J, Sherlock G (2013) Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:R97

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arnaud M, Costanzo M, Skrzypek M, Binkley G, Lane C et al (2005) The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acids Res 33:D358–D363

    Article  CAS  PubMed  Google Scholar 

  15. Enloe B, Diamond A, Mitchell AP (2000) A single-transformation gene function test in diploid Candida albicans. J Bacteriol 182:5730–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nobile C, Mitchell AP (2009) Large-scale gene disruption using the UAU1 cassette. Methods Mol Biol 499:175–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abbey D, Funt J, Lurie-Weinberger M, Thompson D, Regev A et al (2014) YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Med 6:100

    PubMed  PubMed Central  Google Scholar 

  18. Sirr A, Cromie GA, Jeffery EW, Gilbert TL, Ludlow CL et al (2015) Allelic variation, aneuploidy, and nongenetic mechanisms suppress a monogenic trait in yeast. Genetics 199:247–262

    Article  CAS  PubMed  Google Scholar 

  19. Tan Z, Hays M, Cromie GA, Jeffery EW, Scott AC et al (2013) Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci U S A 110:12367–12372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ludlow CL, Scott AC, Cromie GA, Jeffery EW, Sirr A et al (2013) High-throughput tetrad analysis. Nat Methods 10(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hickman MA, Paulson C, Dudley A, Berman J (2015) Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. Genetics 200:781–794

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gresham D, Curry B, Ward A, Gordon DB, Brizuela L et al (2010) Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes. Proc Natl Acad Sci U S A 107:1482–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rose MD (1987) Isolation of genes by complementation in yeast. Methods Enzymol 152:481–504

    Article  CAS  PubMed  Google Scholar 

  25. Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4:393–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Painter HJ, Altenhofen LM, Kafsack BF, Llinas M (2013) Whole-genome analysis of Plasmodium spp. Utilizing a new agilent technologies DNA microarray platform. Methods Mol Biol 923:213–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We like to thank Mathura A. Thevandavakkam for critical reading of the manuscript. A.F. is supported by a grant from the NIAID 2 R15 AI090633. J.B. is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) REA grant agreement number 303635; by an European Research Council Advanced Award, number 340087, RAPLODAPT, by grants from the Israel Science foundation (340/13), and by the National Institute of Allergy and Infectious Disease (R01AI075096 and R01AI0624273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Forche .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

SNP probes for SNP/CGH microarray (adapted from [12])

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Berman, J., Forche, A. (2017). Haplotyping a Non-meiotic Diploid Fungal Pathogen Using Induced Aneuploidies and SNP/CGH Microarray Analysis. In: Tiemann-Boege, I., Betancourt, A. (eds) Haplotyping. Methods in Molecular Biology, vol 1551. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6750-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6750-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6748-3

  • Online ISBN: 978-1-4939-6750-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics