Skip to main content

PacBio for Haplotyping in Gene Families

  • Protocol
  • First Online:
Haplotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1551))

Abstract

The throughput and read length provided by Pacific Bioscience (PacBio) Single Molecule Real Time (SMRT) sequencing platform makes it feasible to construct contiguous, non-chimeric sequences. This is especially useful for genes with repetitive sequences in their gene bodies in gene families. We illustrate the use of PacBio to sequence and assemble hundreds of transcripts of gluten gene families from different cultivars of wheat using sequence from a single SMRT cell. To this end, we barcoded amplicons from different cultivars, then pooled these into one library for sequencing. Sequencing reads were later separated by the barcodes and further sorted into different gene groups by blast. The reads from each gene are then assembled by SeqmanNGen software. Given the length of 1 kb for each sequence derived from an initial molecule, the phase of the polymorphisms is not lost and can be used to infer also haplotype differences between different cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Llaca V, Messing J (1998) Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15(2):211–220

    Article  CAS  PubMed  Google Scholar 

  2. Miclaus M, Xu JH, Messing J (2010) Differential gene expression and epiregulation of alpha zein gene copies in maize haplotypes. PLoS Genet 7(6):e1002131. doi:10.1371/journal.pgen.1002131, PGENETICS-D-11-00531 [pii]

    Article  Google Scholar 

  3. Song R, Llaca V, Linton E, Messing J (2001) Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 11(11):1817–1825. doi:10.1101/gr.197301

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Song R, Messing J (2002) Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant Physiol 130(4):1626–1635. doi:10.1104/pp.012179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene locus in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234–242

    Article  CAS  Google Scholar 

  6. Huang XQ, Cloutier S (2008) Molecular characterization and genomic organization of low molecular weight glutenin subunit genes at the Glu-3 loci in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 116(7):953–966. doi:10.1007/s00122-008-0727-1

    Article  CAS  PubMed  Google Scholar 

  7. Marino CL, Tuleen NA, Hart GE, Nelson JC, Sorrells ME, Lu YH, Leroy P, Lopes CR (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39(2):359–366, doi: g96-046 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Payne PI, Law CN, Mudd EE (1980) Control by homeologous group I chromosomes of the high molecular weight subunits of glutnin, a major protein of wheat endosperm. Theor Appl Genet 58:113–120

    Article  CAS  PubMed  Google Scholar 

  9. Sabelli P, Shewry PR (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209–216

    Article  CAS  PubMed  Google Scholar 

  10. Geraghty D, Peifer MA, Rubenstein I, Messing J (1981) The primary structure of a plant storage protein: zein. Nucleic Acids Res 9(19):5163–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Masci S, D'Ovidio R, Lafiandra D, Kasarda DD (1998) Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol 118(4):1147–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sugiyama T, Rafalski A, Peterson D, Soll D (1985) A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucleic Acids Res 13(24):8729–8737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understand gene family structure. Theor Appl Genet 96:743–750

    Article  CAS  Google Scholar 

  14. Payne IP (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  15. Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I. Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theor Appl Genet 95:50–58

    Article  CAS  Google Scholar 

  16. Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences. J Biol Chem 260(13):8203–8213

    CAS  PubMed  Google Scholar 

  17. Payne PI, Jackson EA, Holt LM, Law CN (1984) Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor Appl Genet 67:235–243

    Article  CAS  PubMed  Google Scholar 

  18. Revolutionize genomics with SMRT sequencing. Pacbio brochure. http://www.pacb.com/wp-content/uploads/2015/09/PacBio_RS_II_Brochure.pdf

  19. Pacific Biosciences (2013). Specifics of SMRT sequencing data. https://speakerdeck.com/pacbio/specifics-of-smrt-sequencing-data

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Messing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, W., Messing, J. (2017). PacBio for Haplotyping in Gene Families. In: Tiemann-Boege, I., Betancourt, A. (eds) Haplotyping. Methods in Molecular Biology, vol 1551. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6750-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6750-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6748-3

  • Online ISBN: 978-1-4939-6750-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics