Skip to main content

Hydrophilic Strong Anion Exchange (hSAX) Chromatography Enables Deep Fractionation of Tissue Proteomes

  • Protocol
  • First Online:
Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1550))

Abstract

The bottom-up proteomic analysis of cell line and tissue samples to a depth > 10,000 proteins still represents a considerable challenge because of the sheer number of peptides generated by proteolytic digestions and the high dynamic range of protein expression. As a result, comprehensive protein coverage requires multidimensional peptide separation. Recently, off-line hydrophilic strong cation exchange (hSAX) chromatography has proven its merits for high resolution separation of peptides due to its high degree of orthogonality to reversed-phase liquid chromatography. Here we describe the use of hSAX for the deep analysis of tissue proteomes. The protocol includes optimized sample preparation steps (lysis with the aid of mechanical disruption, one-step disulfide bridge reduction and alkylation), setup and operation of hSAX columns and gradients, desalting of hSAX fractions prior to LC-MS/MS analysis, and suggestions for the choice of data acquisition parameters and data analysis using MaxQuant. Application of the protocol to the fractionation of 300 μg human brain tissue digest led to the identification of more than 100,000 unique peptide sequences representing over 10,195 proteins and 9,500 genes in 3 days of measurement time on a Q Exactive Plus mass spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

AGC:

Acquisition gain control

CAA:

Chloroacetamide

DTT:

Dithiothreitol

FA:

Formic acid

FDR:

False discovery rate

HCl:

Hydrochloric acid

HPLC:

High-performance liquid chromatography

hSAX:

Hydrophilic strong anion exchange

IMAC:

Immobilized metal ion affinity chromatography

IT:

Injection time

MeOH:

Methanol

MS:

Mass spectrometer

MS/MS:

Tandem mass spectrometry

PBS:

Phosphate buffered saline

PSM:

Peptide spectrum match

RP:

Reversed-phase

SAX:

Strong anion exchange

SCX:

Strong cation exchange StageTip stop and go extraction tip

TCEP:

Tris-(2-carboxyethyl)-phosphin

TFA:

Trifluoroacetic acid

Tris:

Tris(hydroxymethyl)aminomethane v/v volume/volume

w/w:

Weight/weight

ZIC-HILIC:

Zwitterionic hydrophilic interaction liquid chromatography

References

  1. Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  CAS  PubMed  Google Scholar 

  2. Kim M-S, Pinto SM, Getnet D et al (2014) A draft map of the human proteome. Nature 509:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Richards AL, Merrill AE, Coon JJ (2015) Proteome sequencing goes deep. Curr Opin Chem Biol 24:11–17

    Article  CAS  PubMed  Google Scholar 

  4. Mann M, Kulak NA, Nagaraj N et al (2013) The coming age of complete accurate, and ubiquitous proteomes. Mol Cell 49:583–590

    Article  CAS  PubMed  Google Scholar 

  5. Nagaraj N, Wisniewski JR, Geiger T et al (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beck M, Schmidt A, Malmstroem J et al (2011) The quantitative proteome of a human cell line. Mol Syst Biol 7:549

    Article  PubMed  PubMed Central  Google Scholar 

  7. Geiger T, Wehner A, Schaab C et al (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11:M111.014050

    Article  PubMed  PubMed Central  Google Scholar 

  8. Azimifar SB, Nagaraj N, Cox J et al (2014) Cell-type-resolved quantitative proteomics of murine liver. Cell Metab 20:1076–1087

    Article  CAS  PubMed  Google Scholar 

  9. Deshmukh AS, Murgia M, Nagaraj N et al (2015) Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteomics 14:841–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiśniewski R, Dus-Szachniewicz K, Ostasiewicz P et al (2015) Absolute proteome analysis of colorectal mucosa, adenoma and cancer reveals drastic changes in fatty acid metabolism and plasma membrane transporters. J Proteome Res 14:4005–4018

    Article  PubMed  Google Scholar 

  11. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  PubMed  Google Scholar 

  12. Boersema PJ, Divecha N, Heck AJR et al (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6:937–946

    Article  CAS  PubMed  Google Scholar 

  13. Hao P, Guo T, Li X et al (2010) Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome. J Proteome Res 9:3520–3526

    Article  CAS  PubMed  Google Scholar 

  14. Hennrich ML, Groenewold V, Kops GJPL et al (2011) Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach. Anal Chem 83:7137–7143

    Article  CAS  PubMed  Google Scholar 

  15. Gilar M, Olivova P, Daly AE et al (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703

    Article  CAS  PubMed  Google Scholar 

  16. Zhou F, Sikorski TW, Ficarro SB et al (2011) Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms. Anal Chem 83:6996–7005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  PubMed  Google Scholar 

  18. Ritorto MS, Cook K, Tyagi K et al (2013) Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J Proteome Res 12:2449–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruprecht B, Koch H, Medard G et al (2015) Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteomics 14:205–215

    Article  CAS  PubMed  Google Scholar 

  20. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  21. Kulak NA, Pichler G, Paron I et al (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11:319–324

    Article  CAS  PubMed  Google Scholar 

  22. Hahne H, Pachl F, Ruprecht B et al (2013) DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat Methods 10:989–991

    Article  CAS  PubMed  Google Scholar 

  23. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  24. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ruprecht, B., Wang, D., Chiozzi, R.Z., Li, LH., Hahne, H., Kuster, B. (2017). Hydrophilic Strong Anion Exchange (hSAX) Chromatography Enables Deep Fractionation of Tissue Proteomes. In: Comai, L., Katz, J., Mallick, P. (eds) Proteomics. Methods in Molecular Biology, vol 1550. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6747-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6747-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6745-2

  • Online ISBN: 978-1-4939-6747-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics