Skip to main content

Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1550))

Abstract

Phosphorylation is among the most important post-translational modifications of proteins and has numerous regulatory functions across all domains of life. However, phosphorylation is often substoichiometric, requiring selective and sensitive methods to enrich phosphorylated peptides from complex cellular digests. Various methods have been devised for this purpose and we have recently described a Fe-IMAC HPLC column chromatography setup which is capable of comprehensive, reproducible, and selective enrichment of phosphopeptides out of complex peptide mixtures. In contrast to other formats such as StageTips or batch incubations using TiO2 or Ti-IMAC beads, Fe-IMAC HPLC columns do not suffer from issues regarding incomplete phosphopeptide binding or elution and enrichment efficiency scales linearly with the amount of starting material. Here, we provide a step-by-step protocol for the entire phosphopeptide enrichment procedure including sample preparation (lysis, digestion, desalting), Fe-IMAC column chromatography (column setup, operation, charging), measurement by LC-MS/MS (nHPLC gradient, MS parameters) and data analysis (MaxQuant). To increase throughput, we have optimized several key steps such as the gradient time of the Fe-IMAC separation (15 min per enrichment), the number of consecutive enrichments possible between two chargings (>20) and the column recharging itself (<1 h). We show that the application of this protocol enables the selective (>90 %) identification of more than 10,000 unique phosphopeptides from 1 mg of HeLa digest within 2 h of measurement time (Q Exactive Plus).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

ACN:

Acetonitrile

AGC:

Acquisition gain control

CAA:

Chloroacetamide

DTT:

Dithiothreitol

FA:

Formic acid

FCS:

Fetal calf serum

HCD:

Higher energy collision induced dissociation

HCl:

Hydrochloride

HPLC:

High-performance liquid chromatography

I.D.:

Inner diameter

IMAC:

Immobilized metal ion affinity chromatography

MeOH:

Methanol

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PBS:

Phosphate buffered saline

Ppm:

parts per million

PSM:

Peptide spectrum match

pY/pS/Pt:

Phosphotyrosine, -serine, -threonine

TFA:

Trifluoro acetic acid

TiO2 :

Titanium dioxide

Tris:

Tris(hydroxymethyl)aminomethane

v/v:

Volume/volume

w/w:

Weight/weight

ZrO2 :

Zirconium dioxide

References

  1. Lu Z, Jiang G, Blume-Jensen P et al (2001) Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 21:4016–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruprecht B, Lemeer S (2014) Proteomic analysis of phosphorylation in cancer. Expert Rev Proteomics 11:259–267

    Article  CAS  PubMed  Google Scholar 

  3. Lemeer S, Heck AJ (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13:414–420

    Article  CAS  PubMed  Google Scholar 

  4. Pinkse MWH, Uitto PM, Hilhorst MJ et al (2004) Selective Isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  5. Kweon HK, Håkansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749

    Article  CAS  PubMed  Google Scholar 

  6. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    Article  CAS  PubMed  Google Scholar 

  7. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  8. Zhou H, Xu S, Ye M et al (2006) Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. J Proteome Res 5:2431–2437

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Low TY, Hennrich ML et al (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics 10:M110.006452

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bodenmiller B, Mueller LN, Mueller M et al (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    Article  CAS  PubMed  Google Scholar 

  11. Tsai C-F, Hsu C-C, Hung J-N et al (2014) Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal Chem 86:685–693

    Article  CAS  PubMed  Google Scholar 

  12. Thingholm TE, Jensen ON, Robinson PJ et al (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671

    Article  CAS  PubMed  Google Scholar 

  13. Ruprecht B, Koch H, Medard G et al (2015) Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteomics 14:205–215

    Article  CAS  PubMed  Google Scholar 

  14. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  15. Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem 83:7635–7644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Q, Ning Z, Tang J et al (2009) Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8:5375–5381

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H, Di Palma S, Preisinger C et al (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12:260–271

    Article  CAS  PubMed  Google Scholar 

  18. Hahne H, Pachl F, Ruprecht B et al (2013) DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat Methods 10:989–991

    Article  CAS  PubMed  Google Scholar 

  19. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  20. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  21. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  22. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  23. Winter D, Seidler J, Ziv Y et al (2009) Citrate boosts the performance of phosphopeptide analysis by UPLC-ESI-MS/MS. J Proteome Res 8:418–424

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kuster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ruprecht, B., Koch, H., Domasinska, P., Frejno, M., Kuster, B., Lemeer, S. (2017). Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography. In: Comai, L., Katz, J., Mallick, P. (eds) Proteomics. Methods in Molecular Biology, vol 1550. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6747-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6747-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6745-2

  • Online ISBN: 978-1-4939-6747-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics