Proteomics pp 35-46 | Cite as

Profiling Cell Lines Nuclear Sub-proteome

  • Aline Poersch
  • Andrea G. Maria
  • Camila S. Palma
  • Mariana L. Grassi
  • Daniele Albuquerque
  • Carolina H. Thomé
  • Vitor M. FaçaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1550)


Proteins are very dynamic within the cell and their localization and trafficking between subcellular compartments are critical for their correct function. Indeed, the abnormal localization of a protein might lead to the pathogenesis of several diseases. The association of cell fractionation methods and mass spectrometry based proteomic methods allow both the localization and quantification of proteins in different sub-compartments. Here we present a detailed protocol for enrichment, identification, and quantitation of the nuclear proteome in cell lines combining nuclear subproteome enrichment by differential centrifugation and high-throughput proteomics.

Key words

Nuclear fractionation Subcellular proteomics Protein localization Cell Line Mass spectrometry 



This research was supported by FAPESP (Young Scientist Grant—Proc.No. 2011/0947-1), CNPq, Center for Cell Based Thereapy—CTC-CEPID (Proc.FAPESP 2013/08135-2) and CISBi-NAP. A.G.M. C.S.P, M.L.G., C.H.T., and D.A. received fellowships from FAPESP Proc. No., 2014/16839-2, 2012/09682-4, 2013/08755-0, 2013/07675-3, and 2012/02518-4, respectively. A.P receives a PNPD fellowship from CAPES. V.M.F. receives a fellowship from CNPq, Proc.No. (308561/2014-7). We thank Profs. Emanuel Carrilho and Daniel Cardoso for allowing our data collection with the LTQ-Orbitrap Velos at the Analytical Central – Chemistry Institute of São Carlos—University of São Paulo.


  1. 1.
    Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124(Pt 20):3381–3392. doi: 10.1242/jcs.089110 CrossRefPubMedGoogle Scholar
  2. 2.
    Simha R, Briesemeister S, Kohlbacher O, Shatkay H (2015) Protein (multi-)location prediction: utilizing interdependencies via a generative model. Bioinformatics 31(12):i365–i374. doi: 10.1093/bioinformatics/btv264 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Butler GS, Overall CM (2009) Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 8(12):935–948. doi: 10.1038/nrd2945 CrossRefPubMedGoogle Scholar
  4. 4.
    Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24(1):26–34. doi: 10.1016/j.tcb.2013.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chahine MN, Pierce GN (2009) Therapeutic targeting of nuclear protein import in pathological cell conditions. Pharmacol Rev 61(3):358–372. doi: 10.1124/pr.108.000620 CrossRefPubMedGoogle Scholar
  6. 6.
    Turner JG, Sullivan DM (2008) CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr Med Chem 15(26):2648–2655CrossRefPubMedGoogle Scholar
  7. 7.
    Takeda A, Yaseen NR (2014) Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin Cancer Biol 27:3–10. doi: 10.1016/j.semcancer.2014.02.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4(2):106–117. doi: 10.1038/nrc1274 CrossRefPubMedGoogle Scholar
  9. 9.
    Wang SC, Hung MC (2005) Cytoplasmic/nuclear shuttling and tumor progression. Ann N Y Acad Sci 1059:11–15. doi: 10.1196/annals.1339.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Fabbro M, Henderson BR (2003) Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp Cell Res 282(2):59–69CrossRefPubMedGoogle Scholar
  11. 11.
    Salmena L, Pandolfi PP (2007) Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat Rev Cancer 7(6):409–413. doi: 10.1038/nrc2145 CrossRefPubMedGoogle Scholar
  12. 12.
    Santiago A, Li D, Zhao LY, Godsey A, Liao D (2013) p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Mol Biol Cell 24(17):2739–2752. doi: 10.1091/mbc.E12-10-0771 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ohtani N, Brennan P, Gaubatz S, Sanij E, Hertzog P, Wolvetang E, Ghysdael J, Rowe M, Hara E (2003) Epstein-Barr virus LMP1 blocks p16INK4a-RB pathway by promoting nuclear export of E2F4/5. J Cell Biol 162(2):173–183. doi: 10.1083/jcb.200302085 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yang H, Zhao R, Yang HY, Lee MH (2005) Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene 24(11):1924–1935. doi: 10.1038/sj.onc.1208352 CrossRefPubMedGoogle Scholar
  15. 15.
    Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117(2):225–237CrossRefPubMedGoogle Scholar
  16. 16.
    Alt JR, Gladden AB, Diehl JA (2002) p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 277(10):8517–8523. doi: 10.1074/jbc.M108867200 CrossRefPubMedGoogle Scholar
  17. 17.
    Drissi R, Dubois ML, Boisvert FM (2013) Proteomics methods for subcellular proteome analysis. FEBS J 280(22):5626–5634. doi: 10.1111/febs.12502 CrossRefPubMedGoogle Scholar
  18. 18.
    Lee YH, Tan HT, Chung MC (2010) Subcellular fractionation methods and strategies for proteomics. Proteomics 10(22):3935–3956. doi: 10.1002/pmic.201000289 CrossRefPubMedGoogle Scholar
  19. 19.
    Ramsby ML, Makowski GS, Khairallah EA (1994) Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments. Electrophoresis 15(2):265–277CrossRefPubMedGoogle Scholar
  20. 20.
    Sawhney S, Stubbs R, Hood K (2009) Reproducibility, sensitivity and compatibility of the ProteoExtract subcellular fractionation kit with saturation labeling of laser microdissected tissues. Proteomics 9(16):4087–4092. doi: 10.1002/pmic.200800949 CrossRefPubMedGoogle Scholar
  21. 21.
    Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190(4):491–500. doi: 10.1083/jcb.201004052 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660. doi: 10.1038/nprot.2006.427 CrossRefPubMedGoogle Scholar
  23. 23.
    Rauch A, Bellew M, Eng J, Fitzgibbon M, Holzman T, Hussey P, Igra M, Maclean B, Lin CW, Detter A, Fang R, Faca V, Gafken P, Zhang H, Whiteaker J, States D, Hanash S, Paulovich A, McIntosh MW (2006) Computational proteomics analysis system (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res 5(1):112–121. doi: 10.1021/pr0503533 CrossRefPubMedGoogle Scholar
  24. 24.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392CrossRefPubMedGoogle Scholar
  25. 25.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658CrossRefPubMedGoogle Scholar
  26. 26.
    Faca VM, Ventura AP, Fitzgibbon MP, Pereira-Faca SR, Pitteri SJ, Green AE, Ireton RC, Zhang Q, Wang H, O’Briant KC, Drescher CW, Schummer M, McIntosh MW, Knudsen BS, Hanash SM (2008) Proteomic analysis of ovarian cancer cells reveals dynamic processes of protein secretion and shedding of extra-cellular domains. PLoS One 3(6):e2425. doi: 10.1371/journal.pone.0002425 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Aline Poersch
    • 1
    • 2
  • Andrea G. Maria
    • 3
  • Camila S. Palma
    • 1
    • 2
  • Mariana L. Grassi
    • 1
    • 2
  • Daniele Albuquerque
    • 1
  • Carolina H. Thomé
    • 1
    • 2
  • Vitor M. Faça
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and Immunology, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.Center for Cell Based Therapy - Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  3. 3.Department of Pediatrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations