Skip to main content

Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms

  • Protocol
  • First Online:
Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1550))

Abstract

Targeted mass spectrometry comprises a set of methods able to quantify protein analytes in complex mixtures with high accuracy and sensitivity. These methods, e.g., Selected Reaction Monitoring (SRM) and SWATH MS, use specific mass spectrometric coordinates (assays) for reproducible detection and quantification of proteins. In this protocol, we describe how to analyze, in a targeted manner, data from a SWATH MS experiment aimed at monitoring thousands of proteins reproducibly over many samples. We present a standard SWATH MS analysis workflow, including manual data analysis for quality control (based on Skyline) as well as automated data analysis with appropriate control of error rates (based on the OpenSWATH workflow). We also discuss considerations to ensure maximal coverage, reproducibility, and quantitative accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domon B (2012) Considerations on selected reaction monitoring experiments: implications for the selectivity and accuracy of measurements. Proteomics Clin Appl 6:609–614. doi:10.1002/prca.201200111

    Article  CAS  PubMed  Google Scholar 

  2. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566. doi:10.1038/nmeth.2015

    Article  CAS  PubMed  Google Scholar 

  3. Picotti P, Bodenmiller B, Mueller LN et al (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806. doi:10.1016/j.cell.2009.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venable JD, Dong M-Q, Wohlschlegel J et al (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45. doi:10.1038/nmeth705

    Article  CAS  PubMed  Google Scholar 

  5. Chapman JD, Goodlett DR, Masselon CD (2013) Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev. doi:10.1002/mas.21400

    PubMed  Google Scholar 

  6. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717. doi:10.1074/mcp.O111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gallien S, Duriez E, Crone C et al (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11:1709–1723. doi:10.1074/mcp.O112.019802

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peterson AC, Russell JD, Bailey DJ et al (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. doi:10.1074/mcp.O112.020131

    PubMed  PubMed Central  Google Scholar 

  9. Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223. doi:10.1038/nbt.2841

    Article  PubMed  Google Scholar 

  10. Schubert OT, Gillet LC, Collins BC et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10:426–441. doi:10.1038/nprot.2015.015

    Article  CAS  PubMed  Google Scholar 

  11. Röst HL, Liu Y, D’Agostino G et al (2016) TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat Methods 13:777–783. doi:10.1038/nmeth.3954

    Article  PubMed  PubMed Central  Google Scholar 

  12. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968. doi:10.1093/bioinformatics/btq054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schubert OT, Ludwig C, Kogadeeva M et al (2015) Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe. doi:10.1016/j.chom.2015.06.001

    Google Scholar 

  14. Escher C, Reiter L, MacLean B et al (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:1111–1121. doi:10.1002/pmic.201100463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohlbacher O, Reinert K, Gröpl C et al (2007) TOPP--the OpenMS proteomics pipeline. Bioinformatics 23:e191–7. doi:10.1093/bioinformatics/btl299

    Article  CAS  PubMed  Google Scholar 

  16. Sturm M, Bertsch A, Gröpl C et al (2008) OpenMS – an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163. doi:10.1186/1471-2105-9-163

    Article  PubMed  PubMed Central  Google Scholar 

  17. Röst HL, Schmitt U, Aebersold R, Malmström L (2014) pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library. Proteomics 14:74–77. doi:10.1002/pmic.201300246

    Article  PubMed  Google Scholar 

  18. Röst HL, Schmitt U, Aebersold R, Malmström L (2015) Fast and efficient XML data access for next-generation mass spectrometry. PLoS One 10:e0125108. doi:10.1371/journal.pone.0125108

    Article  PubMed  PubMed Central  Google Scholar 

  19. Junker J, Bielow C, Bertsch A et al (2012) TOPPAS: a graphical workflow editor for the analysis of high-throughput proteomics data. J Proteome Res 11:3914–3920. doi:10.1021/pr300187f

    Article  CAS  PubMed  Google Scholar 

  20. Aiche S, Sachsenberg T, Kenar E et al (2015) Workflows for automated downstream data analysis and visualization in large-scale computational mass spectrometry. Proteomics 15:1443–1447. doi:10.1002/pmic.201400391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teleman J, Röst HL, Rosenberger G et al (2014) DIANA-algorithmic improvements for analysis of data-independent acquisition MS data. Bioinformatics. Oxford, England. doi:10.1093/bioinformatics/btu686

    Google Scholar 

  22. Reiter L, Rinner O, Picotti P et al (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8:430–435. doi:10.1038/nmeth.1584

    Article  CAS  PubMed  Google Scholar 

  23. Röst HL, Rosenberger G, Aebersold R, Malmström L (2015) Efficient visualization of high-throughput targeted proteomics experiments: TAPIR. Bioinformatics. Oxford, England. doi:10.1093/bioinformatics/btv152

    Google Scholar 

  24. Malmström L, Bakochi A, Svensson G et al (2015) Quantitative proteogenomics of human pathogens using DIA-MS. Proteomics 129:98–107. doi:10.1016/j.jprot.2015.09.012

    Article  PubMed  Google Scholar 

  25. Bruderer R, Bernhardt OM, Gandhi T et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen treated 3D liver microtissues. Mol Cell Proteomics. doi:10.1074/mcp.M114.044305

    PubMed  PubMed Central  Google Scholar 

  26. Egertson JD, Kuehn A, Merrihew GE et al (2013) Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 10:744–746. doi:10.1038/nmeth.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parker SJ, Röst HL, Rosenberger G et al (2015) Identification of a set of conserved eukaryotic internal retention time standards for data-independent acquisition mass spectrometry. Mol Cell Proteomics 14:2800–2813. doi:10.1074/mcp.O114.042267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenberger G, Koh CC, Guo T et al (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:140031. doi:10.1038/sdata.2014.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Selevsek N, Chang C-Y, Gillet LC et al (2015) Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-MS. Mol Cell Proteomics 14:739–749. doi:10.1074/mcp.M113.035550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hannes L. Röst , Ruedi Aebersold or Olga T. Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Röst, H.L., Aebersold, R., Schubert, O.T. (2017). Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms. In: Comai, L., Katz, J., Mallick, P. (eds) Proteomics. Methods in Molecular Biology, vol 1550. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6747-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6747-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6745-2

  • Online ISBN: 978-1-4939-6747-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics