Advertisement

Proteomics pp 261-270 | Cite as

Protein Micropatterning Assay: Quantitative Analysis of Protein–Protein Interactions

  • Gerhard J. SchützEmail author
  • Julian Weghuber
  • Peter Lanzerstorfer
  • Eva Sevcsik
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1550)

Abstract

Characterization, especially quantification, of protein interactions in live cells is usually not an easy endeavor. Here, we describe a straightforward method to identify and quantify the interaction of a membrane protein (“bait”) and a fluorescently labeled interaction partner (“prey”) (membrane-bound or cytosolic) in live cells using Total Internal Reflection Fluorescence microscopy. The bait protein is immobilized within patterns in the plasma membrane (e.g., via an antibody); the bait–prey interaction strength can be quantified by determining the prey bulk fluorescence intensity with respect to the bait patterns. This method is particularly suitable also for the analysis of weak, transient interactions that are not easily accessible with other methods.

Key words

Micropatterning Protein–protein interactions Soft lithography TIRF microscopy Quantitive analysis Membrane proteins 

Notes

Acknowledgments

This work was funded by the Austrian Science Fund (FWF projects P 26337 and P 25730), the Austrian Research Promotion Agency (FFG project 842379), the program ‘Regionale Wettbewerbsfähigkeit OÖ 2007–2013’ with the financial support of the European Fund for Regional Development, as well as the Federal State of Upper Austria.

References

  1. 1.
    Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621–1625CrossRefPubMedGoogle Scholar
  2. 2.
    Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032CrossRefPubMedGoogle Scholar
  3. 3.
    Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 58:302–311CrossRefPubMedGoogle Scholar
  5. 5.
    Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Suzuki KG, Fujiwara TK, Sanematsu F, Iino R, Edidin M, Kusumi A (2007) GPI-anchored receptor clusters transiently recruit Lyn and Ga for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol 177:717–730CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Orth RN, Wu M, Holowka D, Craighead HG, Baird B (2003) Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir 19:1599–1605CrossRefGoogle Scholar
  8. 8.
    Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–1193CrossRefPubMedGoogle Scholar
  9. 9.
    Waichman S, You C, Beutel O, Bhagawati M, Piehler J (2011) Maleimide photolithography for single-molecule protein-protein interaction analysis in micropatterns. Anal Chem 83(2):501–508CrossRefPubMedGoogle Scholar
  10. 10.
    Gandor S, Reisewitz S, Venkatachalapathy M, Arrabito G, Reibner M, Schröder H, Ruf K, Niemeyer C, Bastiaens P, Dehmelt L (2013) A protein-interaction array inside a living cell. Angewandte Chemie 52:4790–4794CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376CrossRefPubMedGoogle Scholar
  12. 12.
    Schwarzenbacher M, Kaltenbrunner M, Brameshuber M, Hesch C, Paster W, Weghuber J, Heise B, Sonnleitner A, Stockinger H, Schütz GJ (2008) Micropatterning for quantitative analysis of protein-protein interactions in living cells. Nat Methods 5:1053–1060CrossRefPubMedGoogle Scholar
  13. 13.
    Weghuber J, Sunzenauer S, Plochberger B, Brameshuber M, Haselgrubler T, Schutz GJ (2010) Temporal resolution of protein-protein interactions in the live-cell plasma membrane. Anal Bioanal Chem 397:3339–3347CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Alexander RA, Prager GW, Mihaly-Bison J, Uhrin P, Sunzenauer S, Binder BR, Schutz GJ, Freissmuth M, Breuss JM (2012) VEGF-induced endothelial cell migration requires urokinase receptor (uPAR)-dependent integrin redistribution. Cardiovasc Res 94:125–135CrossRefPubMedGoogle Scholar
  15. 15.
    Lanzerstorfer P, Borgmann D, Schutz G, Winkler SM, Hoglinger O, Weghuber J (2014) Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 9:e92151CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lanzerstorfer P, Yoneyama Y, Hakuno F, Muller U, Hoglinger O, Takahashi S, Weghuber J (2015) Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces. FEBS J 282:987–1005CrossRefPubMedGoogle Scholar
  17. 17.
    Bashour KT, Gondarenko A, Chen H, Shen K, Liu X, Huse M, Hone JC, Kam LC (2014) CD28 and CD3 have complementary roles in T-cell traction forces. Proc Natl Acad Sci U S A 111:2241–2246CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sunzenauer S, Zojer V, Brameshuber M, Trols A, Weghuber J, Stockinger H, Schutz GJ (2013) Determination of binding curves via protein micropatterning in vitro and in living cells. Cytometry A 83:847–854CrossRefPubMedGoogle Scholar
  19. 19.
    Sevcsik E, Brameshuber M, Folser M, Weghuber J, Honigmann A, Schutz GJ (2015) GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 6:6969CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weghuber J, Brameshuber M, Sunzenauer S, Lehner M, Paar C, Haselgrubler T, Schwarzenbacher M, Kaltenbrunner M, Hesch C, Paster W, Heise B, Sonnleitner A, Stockinger H, Schutz GJ (2010) Detection of protein-protein interactions in the live cell plasma membrane by quantifying prey redistribution upon bait micropatterning. Methods Enzymol 472:133–151CrossRefPubMedGoogle Scholar
  21. 21.
    Weghuber J, Sunzenauer S, Brameshuber M, Plochberger B, Hesch C, Schutz G. J (2010) In-vivo detection of protein-protein interactions on micro-patterned surfaces. J Vis Exp 37Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Gerhard J. Schütz
    • 1
    Email author
  • Julian Weghuber
    • 2
  • Peter Lanzerstorfer
    • 2
  • Eva Sevcsik
    • 1
  1. 1.Institute of Applied PhysicsTU WienViennaAustria
  2. 2.School of Engineering and Environmental SciencesUniversity of Applied Sciences Upper AustriaWelsAustria

Personalised recommendations