Advertisement

Proteomics pp 149-170 | Cite as

Dual-Color, Multiplex Analysis of Protein Microarrays for Precision Medicine

  • Solomon Yeon
  • Florian Bell
  • Michael Shultz
  • Grace Lawrence
  • Michael Harpole
  • Virginia EspinaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1550)

Abstract

Generating molecular information in a clinically relevant time frame is the first hurdle to truly integrating precision medicine in health care. Reverse phase protein microarrays are being utilized in clinical trials for quantifying posttranslationally modified signal transduction proteins and cellular signaling pathways, allowing direct comparison of the activation state of proteins from multiple specimens, or individual patient specimens, within the same array. This technology provides diagnostic and therapeutic information critical to precision medicine. To enhance accessibility of this technology, two hurdles must be overcome: data normalization and data acquisition. Herein we describe an unamplified, dual-color signal detection methodology for reverse phase protein microarrays that allows multiplex, within spot data normalization, reduces data acquisition time, simplifies automated spot detection, and provides a stable signal output. This method utilizes Quantum Nanocrystal fluorophore labels (Qdot) substituted for organic fluorophores coupled with an imager (ArrayCAM) that captures images of the microarray rather than sequentially scanning the array. Streamlining and standardizing the data analysis steps with ArrayCAM high-resolution, dual mode chromogenic/fluorescent array imaging overcomes the data acquisition hurdle. The spot location and analysis algorithm provides certain parameter settings that can be tailored to the particular microarray type (fluorescent vs. colorimetric), resulting in greater than 99 % spot location sensitivity. The described method demonstrates equivalent sensitivity for a non-amplified Qdot immunoassay when using automated vs. manual immunostaining procedures.

Key words

Fluorescence Multicolor detection Precision medicine Posttranslational modification Protein microarray Protein phosphorylation Qdot nanocrystal Receptor tyrosine kinase Reverse phase protein microarray Signal transduction 

Notes

Acknowledgments

This work was funded in part by George Mason University and Grace Bio-Labs, Inc.

References

  1. 1.
    Holmes FA, Espina V, Liotta LA, Nagarwala YM, Danso M, McIntyre KJ (2013) Pathologic complete response after preoperative anti-HER2 therapy correlates with alterations in PTEN, FOXO, phosphorylated Stat5, and autophagy protein signaling. BMC Res Notes 6:507CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Korf U, Derdak S, Tresch A, Henjes F, Schumacher S, Schmidt C (2008) Quantitative protein microarrays for time-resolved measurements of protein phosphorylation. Proteomics 8:4603–4612CrossRefPubMedGoogle Scholar
  3. 3.
    Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3:317–325CrossRefPubMedGoogle Scholar
  4. 4.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763PubMedGoogle Scholar
  5. 5.
    Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989CrossRefPubMedGoogle Scholar
  6. 6.
    Petricoin EF III, Espina V, Araujo RP, Midura B, Yeung C, Wan X (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440CrossRefPubMedGoogle Scholar
  7. 7.
    Gallagher RI, Espina V (2014) Reverse phase protein arrays: mapping the path towards personalized medicine. Mol Diagn Ther 18:619–630CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huels C, Muellner S, Meyer HE, Cahill DJ (2002) The impact of protein biochips and microarrays on the drug development process. Drug Discov Today 7:S119–S124CrossRefPubMedGoogle Scholar
  9. 9.
    Jameson JL, Longo DL (2015) Precision medicine—personalized, problematic, and promising. N Engl J Med 372:2229–2234CrossRefPubMedGoogle Scholar
  10. 10.
    Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4:461–481CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cremona M, Espina V, Caccia D, Veneroni S, Colecchia M, Pierobon M (2014) Stratification of clear cell renal cell carcinoma by signaling pathway analysis. Expert Rev Proteomics 11:237–249CrossRefPubMedGoogle Scholar
  12. 12.
    Espina V, Liotta LA, Petricoin EF III (2009) Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 520:89–105CrossRefPubMedGoogle Scholar
  13. 13.
    Jameson GS, Petricoin EF, Sachdev J, Liotta LA, Loesch DM, Anthony SP (2014) A pilot study utilizing multi-omic molecular profiling to find potential targets and select individualized treatments for patients with previously treated metastatic breast cancer. Breast Cancer Res Treat 147:579–588CrossRefPubMedGoogle Scholar
  14. 14.
    Pierobon M, Silvestri A, Spira A, Reeder A, Pin E, Banks S (2014) Pilot phase I/II personalized therapy trial for metastatic colorectal cancer: evaluating the feasibility of protein pathway activation mapping for stratifying patients to therapy with imatinib and panitumumab. J Proteome Res 13:2846–2855CrossRefPubMedGoogle Scholar
  15. 15.
    Robertson FM, Petricoin EF III, Van Laere SJ, Bertucci F, Chu K, Fernandez SV (2013) Presence of anaplastic lymphoma kinase in inflammatory breast cancer. Springerplus 2:497CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7:1508–1517CrossRefPubMedGoogle Scholar
  17. 17.
    Xia W, Petricoin EF III, Zhao S, Liu L, Osada T, Cheng Q (2013) An heregulin-EGFR-HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models. Breast Cancer Res 15:R85CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gallagher RI, Silvestri A, Petricoin EF III, Liotta LA, Espina V (2011) Reverse phase protein microarrays: fluorometric and colorimetric detection. Methods Mol Biol 723:275–301CrossRefPubMedGoogle Scholar
  19. 19.
    Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5:2512–2521CrossRefPubMedGoogle Scholar
  20. 20.
    VanMeter AJ, Rodriguez AS, Bowman ED, Jen J, Harris CC, Deng J (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7:1902–1924CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chiechi A, Mueller C, Boehm KM, Romano A, Benassi MS, Picci P (2012) Improved data normalization methods for reverse phase protein microarray analysis of complex biological samples. Biotechniques 1–7Google Scholar
  22. 22.
    Mannsperger HA, Gade S, Henjes F, Beissbarth T, Korf U (2010) RPPanalyzer: analysis of reverse-phase protein array data. Bioinformatics 26:2202–2203CrossRefPubMedGoogle Scholar
  23. 23.
    Stanislaus R, Carey M, Deus HF, Coombes K, Hennessy BT, Mills GB (2008) RPPAML/RIMS: a metadata format and an information management system for reverse phase protein arrays. BMC Bioinformatics 9:555CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Troncale S, Barbet A, Coulibaly L, Henry E, He B, Barillot E (2012) NormaCurve: a SuperCurve-based method that simultaneously quantifies and normalizes reverse phase protein array data. PLoS One 7:e38686CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    von der Heyde S, Sonntag J, Kaschek D, Bender C, Bues J, Wachter A (2014) RPPanalyzer toolbox: an improved R package for analysis of reverse phase protein array data. Biotechniques 57:125–135PubMedGoogle Scholar
  26. 26.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefPubMedGoogle Scholar
  28. 28.
    Shao L, Gao Y, Yan F (2011) Semiconductor quantum dots for biomedicial applications. Sensors (Basel) 11:11736–11751CrossRefGoogle Scholar
  29. 29.
    Nichkova M, Dosev D, Davies AE, Gee SJ, Kennedy IM, Hammock BD (2007) Quantum dots as reporters in multiplexed immunoassays for biomarkers of exposure to agrochemicals. Anal Lett 40:1423–1433CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684–688CrossRefPubMedGoogle Scholar
  31. 31.
    Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125:279–285CrossRefPubMedGoogle Scholar
  32. 32.
    Bobrow MN, Litt GJ, Shaughnessy KJ, Mayer PC, Conlon J (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150:145–149CrossRefPubMedGoogle Scholar
  33. 33.
    Bobrow MN, Shaughnessy KJ, Litt GJ (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137:103–112CrossRefPubMedGoogle Scholar
  34. 34.
    King G, Payne S, Walker F, Murray GI (1997) A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J Pathol 183:237–241CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Solomon Yeon
    • 1
  • Florian Bell
    • 2
  • Michael Shultz
    • 2
  • Grace Lawrence
    • 1
  • Michael Harpole
    • 1
  • Virginia Espina
    • 1
    Email author
  1. 1.Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasUSA
  2. 2.Grace Bio-LabsBendUSA

Personalised recommendations