Skip to main content

Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry

  • Protocol
  • First Online:
Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1550))

Abstract

Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein–protein interactions, but the requirement to maintain protein–protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol 11(12):848. doi:10.15252/msb.20156351

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8(8):645–654. doi:10.1038/nrm2208

    Article  CAS  PubMed  Google Scholar 

  3. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147. doi:10.1038/415141a

    Article  CAS  PubMed  Google Scholar 

  4. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183. doi:10.1038/415180a

    Article  CAS  PubMed  Google Scholar 

  5. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163(3):712–723. doi:10.1016/j.cell.2015.09.053

    Article  CAS  PubMed  Google Scholar 

  6. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wuhr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP (2015) The bioplex network: a systematic exploration of the human interactome. Cell 162(2):425–440. doi:10.1016/j.cell.2015.06.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046. doi:10.1126/science.1176495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403. doi:10.1016/j.cell.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi H, Larsen B, Lin ZY, Breitkreutz A, Mellacheruvu D, Fermin D, Qin ZS, Tyers M, Gingras AC, Nesvizhskii AI (2011) SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 8(1):70–73. doi:10.1038/nmeth.1541

    Article  CAS  PubMed  Google Scholar 

  10. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12(10):1576–1590. doi:10.1002/pmic.201100523

    Article  CAS  PubMed  Google Scholar 

  11. Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, Pawson T (2011) Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol 29(7):653–658. doi:10.1038/nbt.1905

    Article  CAS  PubMed  Google Scholar 

  12. Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K, Dai AY, Bagshaw R, Dennis JW, Gingras AC, Daly RJ, Pawson T (2013) Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499(7457):166–171. doi:10.1038/nature12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert JP, Ivosev G, Couzens AL, Larsen B, Taipale M, Lin ZY, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras AC (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10(12):1239–1245. doi:10.1038/nmeth.2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, Gstaiger M, Aebersold R (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10(12):1246–1253. doi:10.1038/nmeth.2703

    Article  CAS  PubMed  Google Scholar 

  15. Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754. doi:10.1083/jcb.200911091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z, Sansoni A, Kanduri K, Joly R, Malzac A, Lahdesmaki H, Lahesmaa R, Yamasaki S, Saito T, Malissen M, Aebersold R, Gstaiger M, Malissen B (2014) Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a lat adaptor-independent TCR signaling hub. Nat Immunol 15(4):384–392. doi:10.1038/ni.2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318. doi:10.1038/nbt790

    Article  CAS  PubMed  Google Scholar 

  18. Hilger M, Mann M (2012) Triple SILAC to determine stimulus specific interactions in the Wnt pathway. J Proteome Res 11(2):982–994. doi:10.1021/pr200740a

    Article  CAS  PubMed  Google Scholar 

  19. Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J (2011) Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell 43(3):406–417. doi:10.1016/j.molcel.2011.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lavallee-Adam M, Rousseau J, Domecq C, Bouchard A, Forget D, Faubert D, Blanchette M, Coulombe B (2013) Discovery of cell compartment specific protein-protein interactions using affinity purification combined with tandem mass spectrometry. J Proteome Res 12(1):272–281. doi:10.1021/pr300778b

    Article  CAS  PubMed  Google Scholar 

  21. Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y, Novtisky EJ, Second T, Duan J, Kao A, Guan S, Vellucci D, Rychnovsky SD, Huang L (2014) A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol Cell Proteomics 13(12):3533–3543. doi:10.1074/mcp.M114.042630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Babu M, Vlasblom J, Pu S, Guo X, Graham C, Bean BD, Burston HE, Vizeacoumar FJ, Snider J, Phanse S, Fong V, Tam YY, Davey M, Hnatshak O, Bajaj N, Chandran S, Punna T, Christopolous C, Wong V, Yu A, Zhong G, Li J, Stagljar I, Conibear E, Wodak SJ, Emili A, Greenblatt JF (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585–589. doi:10.1038/nature11354

    Article  CAS  PubMed  Google Scholar 

  23. Hakhverdyan Z, Domanski M, Hough LE, Oroskar AA, Oroskar AR, Keegan S, Dilworth DJ, Molloy KR, Sherman V, Aitchison JD, Fenyo D, Chait BT, Jensen TH, Rout MP, LaCava J (2015) Rapid, optimized interactomic screening. Nat Methods 12(6):553–560. doi:10.1038/nmeth.3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810. doi:10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339(6125):1328–1331. doi:10.1126/science.1230593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim DI, Birendra KC, Zhu W, Motamedchaboki K, Doye V, Roux KJ (2014) Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci U S A 111(24):E2453–E2461. doi:10.1073/pnas.1406459111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambert JP, Tucholska M, Go C, Knight JD, Gingras AC (2015) Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 118:81–94. doi:10.1016/j.jprot.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Dingar D, Kalkat M, Chan PK, Srikumar T, Bailey SD, Tu WB, Coyaud E, Ponzielli R, Kolyar M, Jurisica I, Huang A, Lupien M, Penn LZ, Raught B (2015) BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J Proteomics 118:95–111. doi:10.1016/j.jprot.2014.09.029

    Article  CAS  PubMed  Google Scholar 

  29. Couzens AL, Knight JD, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, Wrana JL, Choi H, Gingras AC (2013) Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 6(302):rs15. doi:10.1126/scisignal.2004712

    Article  PubMed  Google Scholar 

  30. Firat-Karalar EN, Rauniyar N, Yates JR 3rd, Stearns T (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24(6):664–670. doi:10.1016/j.cub.2014.01.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta GD, Coyaud E, Goncalves J, Mojarad BA, Liu Y, Wu Q, Gheiratmand L, Comartin D, Tkach JM, Cheung SW, Bashkurov M, Hasegan M, Knight JD, Lin ZY, Schueler M, Hildebrandt F, Moffat J, Gingras AC, Raught B, Pelletier L (2015) A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163(6):1484–1499. doi:10.1016/j.cell.2015.10.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coyaud E, Mis M, Laurent EM, Dunham WH, Couzens AL, Robitaille M, Gingras AC, Angers S, Raught B (2015) BioID-based identification of Skp cullin F-box (SCF)beta-TrCP1/2 E3 ligase substrates. Mol Cell Proteomics 14(7):1781–1795. doi:10.1074/mcp.M114.045658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng YS, Seibert O, Kloting N, Dietrich A, Strassburger K, Fernandez-Veledo S, Vendrell JJ, Zorzano A, Bluher M, Herzig S, Berriel Diaz M, Teleman AA (2015) PPP2R5C couples hepatic glucose and lipid homeostasis. PLoS Genet 11(10):e1005561. doi:10.1371/journal.pgen.1005561

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kean MJ, Couzens AL, Gingras AC (2012) Mass spectrometry approaches to study mammalian kinase and phosphatase associated proteins. Methods 57(4):400–408. doi:10.1016/j.ymeth.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Banks CA, Boanca G, Lee ZT, Florens L, Washburn MP (2015) Proteins interacting with cloning scars: a source of false positive protein-protein interactions. Sci Rep 5:8530. doi:10.1038/srep08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olhovsky M, Williton K, Dai AY, Pasculescu A, Lee JP, Goudreault M, Wells CD, Park JG, Gingras AC, Linding R, Pawson T, Colwill K (2011) OpenFreezer: a reagent information management software system. Nat Methods 8(8):612–613. doi:10.1038/nmeth.1658

    Article  CAS  PubMed  Google Scholar 

  37. Liu G, Zhang J, Larsen B, Stark C, Breitkreutz A, Lin ZY, Breitkreutz BJ, Ding Y, Colwill K, Pasculescu A, Pawson T, Wrana JL, Nesvizhskii AI, Raught B, Tyers M, Gingras AC (2010) ProHits: integrated software for mass spectrometry-based interaction proteomics. Nat Biotechnol 28(10):1015–1017. doi:10.1038/nbt1010-1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu G, Zhang J, Choi H, Lambert JP, Srikumar T, Larsen B, Nesvizhskii AI, Raught B, Tyers M, Gingras AC (2012) Using ProHits to store, annotate, and analyze affinity purification-mass spectrometry (AP-MS) data. Curr Protoc Bioinformatics Chapter 8:Unit8.16. doi:10.1002/0471250953.bi0816s39

    PubMed  Google Scholar 

  39. Teo G, Liu G, Zhang J, Nesvizhskii AI, Gingras AC, Choi H (2014) SAINTexpress: improvements and additional features in significance analysis of INTeractome software. J Proteomics 100:37–43. doi:10.1016/j.jprot.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  40. Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis NA, Li T, Miteva YV, Hauri S, Sardiu ME, Low TY, Halim VA, Bagshaw RD, Hubner NC, Al-Hakim A, Bouchard A, Faubert D, Fermin D, Dunham WH, Goudreault M, Lin ZY, Badillo BG, Pawson T, Durocher D, Coulombe B, Aebersold R, Superti-Furga G, Colinge J, Heck AJ, Choi H, Gstaiger M, Mohammed S, Cristea IM, Bennett KL, Washburn MP, Raught B, Ewing RM, Gingras AC, Nesvizhskii AI (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736. doi:10.1038/nmeth.2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knight JD, Liu G, Zhang JP, Pasculescu A, Choi H, Gingras AC (2015) A web-tool for visualizing quantitative protein-protein interaction data. Proteomics 15(8):1432–1436. doi:10.1002/pmic.201400429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Wade H Dunham and Zhen-Yuan Lin for optimization of the FLAG protocol, all members of the Gingras and Raught laboratories for help in optimizing the BioID protocol and for helpful discussions, and Boris Dyakov and Cassandra Wong for comments on the manuscript. This work is funded by the Canadian Institutes of Health Research (Foundation grant FDN143301 to A.-C.G.; salary support to PST), the Natural Sciences and Engineering Research Council of Canada (Discovery grant to A.-C.G; salary support to JYY), and a Genome Canada Genome Innovation (GIN) network (through the Ontario Genomics Institute OGI-069 to A.-C.G.). Salary awards are from the Canada Research Chairs Program (ACG and BR) and a Basic Research Fellowship from Parkinson Canada (GGH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Claude Gingras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hesketh, G.G., Youn, JY., Samavarchi-Tehrani, P., Raught, B., Gingras, AC. (2017). Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry. In: Comai, L., Katz, J., Mallick, P. (eds) Proteomics. Methods in Molecular Biology, vol 1550. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6747-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6747-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6745-2

  • Online ISBN: 978-1-4939-6747-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics