Skip to main content

Analyzing Targeted Nucleosome Position and Occupancy in Cancer, Obesity, and Diabetes

  • Protocol
  • First Online:
Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 975 Accesses

Abstract

Chromatin structure plays an integral role in regulation of gene transcription. Studying nucleosome position and occupancy at key regulatory regions within DNA is important to understanding the potential epigenetic mechanisms of gene regulation during various environmental exposures and diseased states. Targeted nucleosome mapping is a convenient method to map nucleosome positions at a specific genomic locus. In this method, mononucleosomal DNA is isolated using micrococcal nuclease. This is followed by qPCR, which uses the mononucleosomal DNA, or the DNA bound by the nucleosome, as the template and overlapping primers that span the target region of genome. qPCR products are analyzed by gel electrophoresis and densitometry to yield a map of nucleosomes along specific, targeted genomic loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. doi:10.1038/nrg2341

    Article  CAS  PubMed  Google Scholar 

  2. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25. doi:10.1016/j.molonc.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  3. Chuang JC, Jones PA (2007) Epigenetics and MicroRNAs. Pediatr Res 61:24R–29R. doi:10.1203/pdr.0b013e3180457684

    Article  CAS  PubMed  Google Scholar 

  4. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296. doi:10.1038/nrg2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898. doi:10.1016/j.cell.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  6. Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25(8):335–343. doi:10.1016/j.tig.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266. doi:10.1038/nsmb.2470

    Article  CAS  PubMed  Google Scholar 

  8. Chandrasekharan MB, Huang F, Sun ZW (2009) Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci U S A 106:16686–16691. doi:10.1073/pnas.0907862106, Epub 2009 Sep 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220. doi:10.1016/j.tig.2004.02.007, http://dx.doi.org/

    Article  CAS  PubMed  Google Scholar 

  10. Radman-Livaja M, Rando OJ (2010) Nucleosome positioning: how is it established, and why does it matter? Dev Biol 339(2):258–266. doi:10.1016/j.ydbio.2009.06.012

    Article  CAS  PubMed  Google Scholar 

  11. Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579. doi:10.1146/annurev.biochem.67.1.545

    Article  CAS  PubMed  Google Scholar 

  12. Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450(7172):1031–1035. doi:10.1038/nature06391

    Article  CAS  PubMed  Google Scholar 

  13. Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9(1):15–26. doi:10.1038/nrg2206

    Article  CAS  PubMed  Google Scholar 

  14. Hogan GJ, Lee CK, Lieb JD (2006) Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2(9):e158. doi:10.1371/journal.pgen.0020158

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6(3):e65. doi:10.1371/journal.pbio.0060065

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang C, Pugh BF (2009) A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol 10(10):R109. doi:10.1186/gb-2009-10-10-r109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhao X, Pendergrast PS, Hernandez N (2001) A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol Cell 7(3):539–549

    Article  CAS  PubMed  Google Scholar 

  18. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    Article  CAS  PubMed  Google Scholar 

  19. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K, Weng Z (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17(8):1170–1177. doi:10.1101/gr.6101007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137(3):445–458. doi:10.1016/j.cell.2009.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Workman JL, Kingston RE (1992) Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 258(5089):1780–1784

    Article  CAS  PubMed  Google Scholar 

  22. Mollazadeh-Beidokhti L, Deseigne J, Lacoste D, Mohammad-Rafiee F, Schiessel H (2009) Stochastic model for nucleosome sliding under an external force. Phys Rev E Stat Nonlin Soft Matter Phys 79(3 Pt 1):031922

    Article  CAS  PubMed  Google Scholar 

  23. Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Egger G, Gal-Yam EN, Jones PA (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12(5):432–444. doi:10.1016/j.ccr.2007.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M, Nervi C, Minucci S, Fuks F, Croce LD (2008) MBD3, a component of the NuRD complex facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28(19):5912–5923. doi:10.1128/MCB.00467-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330(6001):228–231. doi:10.1126/science.1196333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinney SE, Simmons RA (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 21:223–229. doi:10.1016/j.tem.2009.10.002, Epub 2009 Oct 26

    Article  CAS  PubMed  Google Scholar 

  27. Campion J, Milagro FI, Martinez JA (2009) Individuality and epigenetics in obesity. Obes Rev 10:383–392. doi:10.1111/j.1467-789X.2009.00595.x, Epub 2009 Apr 21

    Article  CAS  PubMed  Google Scholar 

  28. de Mello VD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M (2014) DNA methylation in obesity and type 2 diabetes. Ann Med 46:103–113. doi:10.3109/07853890.2013.857259, Epub 2014 Apr 30

    Article  PubMed  Google Scholar 

  29. Henagan TM, Stewart LK, Forney LA, Sparks LM, Johannsen N, Church TS (2014) PGC1α -1 nucleosome position and splice variant expression and cardiovascular disease risk in overweight and obese individuals. PPAR Res 2014:895734. doi:10.1155/2014/895734

  30. Henagan TM, Stefanska B, Fang Z, Navard AM, Ye J, Lenard NR, Devarshi PP (2015) Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 172(11):2782–2798. doi:10.1111/bph.13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drake AJ, McPherson RC, Godfrey KM, Cooper C, Lillycrop KA, Hanson MA, Meehan RR, Seckl JR, Reynolds RM (2012) An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin Endocrinol (Oxf) 77(6):808–815. doi:10.1111/j.1365-2265.2012.04453.x

    Article  CAS  Google Scholar 

  32. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, Lane RH (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41(2):91–102. doi:10.1677/jme-08-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Infante J, Law GL, Young E (2012) Analysis of nucleosome positioning using a nucleosome-scanning assay. In: Morse RH (ed) Chromatin remodeling, vol 833, Methods Mol Biol. Humana, New York, pp 63–87. doi:10.1007/978-1-61779-477-3_5

    Chapter  Google Scholar 

  34. Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18(6):735–748. doi:10.1016/j.molcel.2005.05.003, http://dx.doi.org/

    Article  CAS  PubMed  Google Scholar 

  35. Creamer KM, Job G, Shanker S, Neale GA, Lin Y, Bartholomew B, Partridge JF (2014) The Mi-2 homolog Mit1 actively positions nucleosomes within heterochromatin to suppress transcription. Mol Cell Biol 34:2046–2061. doi:10.1128/mcb.01609-13

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083. doi:10.1101/gr.078261.108, Epub 2008 Jun 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark DJ (2010) Nucleosome positioning, nucleosome spacing and the nucleosome code. J Biomol Struct Dyn 27:781–793. doi:10.1080/073911010010524945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fragoso G, John S, Roberts MS, Hager GL (1995) Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev 9:1933–1947

    Article  CAS  PubMed  Google Scholar 

  39. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD (2003) Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell 11:1587–1598

    Article  CAS  PubMed  Google Scholar 

  40. Sebeson A, Xi L, Zhang Q, Sigmund A, Wang JP, Widom J, Wang X (2015) Differential nucleosome occupancies across Oct4-Sox2 binding sites in murine embryonic stem cells. PLoS One 10:e0127214. doi:10.1371/journal.pone.0127214, eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  41. Infante JJ, Law GL, Young ET (2012) Analysis of nucleosome positioning using a nucleosome-scanning assay. Methods Mol Biol 833:63–87. doi:10.1007/978-1-61779-477-3_5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara M. Henagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Devarshi, P.P., Henagan, T.M. (2017). Analyzing Targeted Nucleosome Position and Occupancy in Cancer, Obesity, and Diabetes. In: Stefanska, B., MacEwan, D. (eds) Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6743-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6743-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6741-4

  • Online ISBN: 978-1-4939-6743-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics