Skip to main content

Proteotypic Peptides and Their Applications

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1549))

Abstract

Recent advances in mass spectrometry based proteomic techniques and publicly available large proteomic repositories are being exploited to characterize the proteome of multiple organisms. While humongous amount of proteomic data is being acquired and analyzed, many biological questions still remain unanswered. Proteotypic peptides which uniquely represent target proteins or a protein isoform are used as an alternative strategy for protein identification in the field of immunological methods and targeted proteomic techniques. Using different computational approaches, resources and techniques used in the identification of proteotypic peptides of target proteins is discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29(7):625–634. doi:10.1038/nbt.1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen Freue GV, Meredith A, Smith D, Bergman A, Sasaki M, Lam KK, Hollander Z, Opushneva N, Takhar M, Lin D, Wilson-McManus J, Balshaw R, Keown PA, Borchers CH, McManus B, Ng RT, McMaster WR, Biomarkers in T, the NCECPoOFCoET (2013) Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation. PLoS Comput Biol 9(4), e1002963. doi:10.1371/journal.pcbi.1002963

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huttenhain R, Malmstrom J, Picotti P, Aebersold R (2009) Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 13(5-6):518–525. doi:10.1016/j.cbpa.2009.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brewis IA, Brennan P (2010) Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 80:1–44. doi:10.1016/B978-0-12-381264-3.00001-1

    Article  CAS  PubMed  Google Scholar 

  5. Percy AJ, Chambers AG, Yang J, Hardie DB, Borchers CH (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844(5):917–926. doi:10.1016/j.bbapap.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  6. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222. doi:10.1038/msb.2008.61

    Article  PubMed  PubMed Central  Google Scholar 

  7. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566. doi:10.1038/nmeth.2015

    Article  CAS  PubMed  Google Scholar 

  8. Dittrich J, Becker S, Hecht M, Ceglarek U (2015) Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. Proteomics Clin Appl 9(1-2):5–16. doi:10.1002/prca.201400121

    Article  CAS  PubMed  Google Scholar 

  9. Vandemoortele G, Staes A, Gonnelli G, Samyn N, De Sutter D, Vandermarliere E, Timmerman E, Gevaert K, Martens L, Eyckerman S (2016) An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics. Sci Rep 6:27220. doi:10.1038/srep27220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9(5):429–434. doi:10.1038/embor.2008.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics. doi:10.1002/pmic.201500449

    PubMed Central  Google Scholar 

  12. Song X, Amirkhani A, Wu JX, Pascovici D, Zaw T, Xavier D, Clarke SJ, Molloy MP (2016) Analytical performance of nanoLC-SRM using non-depleted human plasma over an 18-month period. Proteomics. doi:10.1002/pmic.201500507

    PubMed Central  Google Scholar 

  13. Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52(22):3797–3806. doi:10.1021/bi400110b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chambers AG, Percy AJ, Yang J, Borchers CH (2015) Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol Cell Proteomics 14(11):3094–3104. doi:10.1074/mcp.O115.049957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Craig R, Cortens JP, Beavis RC (2005) The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19(13):1844–1850. doi:10.1002/rcm.1992

    Article  CAS  PubMed  Google Scholar 

  16. Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9(7-8):745–754. doi:10.1002/prca.201400164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang CY, Moritz RL (2013) The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 12(1):162–171. doi:10.1021/pr301012j

    Article  CAS  PubMed  Google Scholar 

  18. Vizcaino JA, Foster JM, Martens L (2010) Proteomics data repositories: providing a safe haven for your data and acting as a springboard for further research. J Proteomics 73(11):2136–2146. doi:10.1016/j.jprot.2010.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797. doi:10.1021/pr800538n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farrah T, Deutsch EW, Kreisberg R, Sun Z, Campbell DS, Mendoza L, Kusebauch U, Brusniak MY, Huttenhain R, Schiess R, Selevsek N, Aebersold R, Moritz RL (2012) PASSEL: the PeptideAtlas SRMexperiment library. Proteomics 12(8):1170–1175. doi:10.1002/pmic.201100515

    Article  CAS  PubMed  Google Scholar 

  21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131. doi:10.1038/nbt1275

    Article  CAS  PubMed  Google Scholar 

  23. Webb-Robertson BJ, Cannon WR, Oehmen CS, Shah AR, Gurumoorthi V, Lipton MS, Waters KM (2010) A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. Bioinformatics 26(13):1677–1683

    Article  CAS  PubMed  Google Scholar 

  24. Fusaro VA, Mani DR, Mesirov JP, Carr SA (2009) Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 27(2):190–198. doi:10.1038/nbt.1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar Keerthikumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Keerthikumar, S., Mathivanan, S. (2017). Proteotypic Peptides and Their Applications. In: Keerthikumar, S., Mathivanan, S. (eds) Proteome Bioinformatics. Methods in Molecular Biology, vol 1549. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6740-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6740-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6738-4

  • Online ISBN: 978-1-4939-6740-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics